ГАЗОГЕНЕРАТОР Российский патент 2014 года по МПК C10J3/48 

Описание патента на изобретение RU2510414C1

Изобретение относится к теплоэнергетике, а именно к устройствам для получения энергетического газа путем смешения водоугольного топлива (ВУТ) и воздуха с последующим горением этой смеси.

В настоящее время в патентной литературе рассматриваются различные варианты установок для газификации водоугольного топлива. Например, известен газогенератор для газификации водоугольной суспензии и твердого топлива, включающий вертикальную реакционную камеру с кипящим слоем твердого топлива, газораспределительную решетку, выполненную с окном в центральной части, средство для подачи твердого топлива, расположенное в нижней части камеры под газораспределительной решеткой, золоотводящее устройство, отличающийся тем, что газогенератор снабжен размещенной в реакционной камере вертикальной перегородкой, делящей ее на отсеки газификации и сжигания топлива, укрепленными на перегородке наклонными тепловыми трубами, размещенными верхними конденсационными частями в отсеке газификации, а нижними, испарительными - в отсеке сжигания топлива, расположенными в окне газораспределительной решетки колошниковыми подпружиненными пластинами; газоплотными экранами, расположенными в отсеках и выполненными в виде вертикальных тепловых труб, соединенных с коллекторами, причем коллектор вертикальных тепловых труб, расположенных в отсеке газификации, сообщен с емкостью для водоугольной суспензии и с трубой для подачи водоугольной суспензии (Патент РФ 1775464, С10J 3/54, 1989 г.).

Недостатком известного газогенератора является то, что теплопередача из отсека сжигания в отсек газификации происходит только через разделяющую их перегородку, а не через всю боковую поверхность отсека газификации, причем лучистый тепловой поток из отсека сжигания в отсек газификации затруднен из-за наличия перегородки, что снижает температуру, а значит и скорость протекания реакций газификации ВУТ. Еще более усугубляет это то, что сжигание ВУТ или угля в кипящем слое проходит при более низких температурах (примерно на 200-300°С), чем при их распыливании, вследствие чего интенсивность процесса газификации ВУТ еще более снижается.

Известна установка плазмотермической переработки водоугольного топлива в синтез-газ, включающая бункер для угольной пыли, резервуар для окислителя, смеситель, диспергирующее устройство, насос для перекачки водоугольной суспензии, подогреватель, газодувку, дымовую трубу, газификационную колонну, теплообменник первой ступени газификационной колонны, закалочное устройство для синтез-газа, плазмореактор, теплообменник второй ступени газификационной колонны, распределитель газифицируемой смеси, плазменные источники, теплообменник для прокачивания горячего синтез-газа, устройство очистки синтез-газа, горелки и топочное устройство газификационной колонны (Патент РФ 2047650, С10J 3/18).

Недостатком известного технического решения является сложность установки, в которой процесс подогрева водоугольной суспензии протекает в две стадии, вначале в подогревателе предварительного подогрева водоугольной суспензии до 500-600 К, а затем в нижней части трубчатого теплообменника первой стадии газификации со сжиганием в теплообменнике части синтез-газа, а процесс газификации водоугольной суспензии протекает в три стадии, вначале в закалочном устройстве, являющемся выходной частью плазмореактора, затем в верхней части теплообменника, а затем в собственно плазмореакторе, а также необходимость использования для реализации третьего этапа газификации высокотемпературного плазмореактора, использование которого требует применения специальных материалов, стойких к воздействию высокой температуры (2500-3000 К) в химически агрессивной среде (СО2, Н2О и т.д.). В известной установке также завышены затраты энергии на производство синтез-газа, что связано с вводом парогазоугольной взвеси, состоящей из окиси углерода, углекислого газа, водорода, паров воды и непрореагировавших частиц угля, в плазмореактор, в котором в качестве реагента используются пары воды, что приводит к дополнительной балластировке газообразных продуктов газификации водяным паром и простейшими углеводородами, образующимися при высоких температурах 2500-3000 К. Используемая в установке схема взаимодействия плазменных струй пара со струями газифицируемой смеси, организация возврата непрореагировавших частиц органической части угля в реакционную зону до их полного превращения в газ в равной степени касается и твердых частиц, входящих в состав минеральной части угля, которые не реагируют с паровой фазой и вследствие чего будут накапливаться в высокотемпературной зоне плазмореактора. Вследствие высоких температур, создаваемых в плазмореакторе (2500-3000 К), и длительности пребывания в ней окислы металлов, входящих в состав минеральной части угля, расплавятся и станет возможным их химическое взаимодействие с углеродом с образованием металлов, их карбидов и окиси углерода, на что будет потрачена значительная часть энергии и что в целом понизит калорийность синтез-газа за счет обогащения его окисью углерода.

Известна также установка (Патент РФ 2217477, C10J 3/46, 2002 г.) для получения синтез-газа из водоугольного топлива, взятая за прототип изобретения, которая содержит бункер для дробленого угля, резервуар для воды и сообщенный с ними диспергатор для получения водоугольного топлива, вертикально установленный газогенератор с камерой газификации для водоугольного топлива и соединенный с ним сепаратор для разделения газообразных продуктов газификации и минеральных отходов, а также она снабжена распределительным устройством для водоугольного топлива, связанным с диспергатором и с камерой газификации для водоугольного топлива, которая выполнена в виде полого цилиндра с закрепленными на оси завихрителями потока, в нижней части которого размещены горелки для распыла водоугольного топлива, воды и углекислого газа, и снабжена снаружи коаксиально размещенным цилиндрическим кожухом с образованием камеры сжигания для водоугольного топлива, при этом кожух выполнен с крышкой с равномерно установленным на ней по периметру камеры сжигания горелками для подачи и распыла водоугольного топлива и с патрубком для подачи воздуха в камеру сжигания. Кроме того, она снабжена теплообменником-сепаратором продуктов сгорания водоугольного топлива, выполненным в виде последовательно установленных секций для отделения золы, воды, азота и секции для отделения углекислого газа, которая сообщена с камерой газификации, распределительным устройством для воды, сообщенным с секцией для отделения воды теплообменника-сепаратора, с диспергатором и камерой газификации, причем камера сжигания для водоугольного топлива связана посредством трубопроводов с теплообменником-сепаратором и распределительным устройством для водоугольного топлива.

Недостатком известного технического решения является сложность установки, в которой часть водоугольного топлива направляется в камеру сжигания, а другая часть в камеру газификации, продукты сгорания из камеры сжигания проходят через теплообменник-сепаратор для отделения углекислого газа, который затем передается в камеру газификации. В известной установке теплообмен между продуктами сгорания в камере сжигания и компонентами топлива в камере газификации организован не оптимально, так как в камерах сгорания (котлах) такого типа основным видом передачи тепла является лучистый теплообмен, а наличие стенки между камерой сжигания и камерой газификации препятствует лучистому теплообмену, что уменьшает эффективность передачи тепла на процесс газификации.

Изобретение направлено на упрощение конструкции и повышение КПД газогенератора для получения энергетического газа из водоугольного топлива.

Эта задача решается тем, что газогенератор, содержащий камеру газификации и группы форсунок, в отличие от известной установки выполнен в виде единой камеры с футеровкой, несколькими группами двухкомпонентных форсунок пневматического типа и с отверстиями встречного дополнительного вдува.

При таком исполнении зона горения и зона газификации организованы внутри единого объема камеры, а теплообмен между зоной горения и зоной газификации осуществлен за счет теплоемкости значительного количества азота в продуктах сгорания и лучистым тепловым потоком от ядра зоны горения напрямую к продуктам сгорания, что обеспечивает процесс газификации водоугольного топлива. Организованный вдув воздуха в газогенераторе через отверстия встречного дополнительного вдува обеспечивает

- стабилизацию фронта пламени процесса горения,

- эжектирование части продуктов газификации к зоне горения, что поддерживает процесс горения за счет образования обратных вихрей,

- избыток окислителя в ядре потока, что приводит к неравномерности соотношения компонентов топлива в поперечном сечении газогенератора, что соответственно способствует протеканию процессов горения и газификации параллельно последовательно, а также увеличивает площадь взаимодействия между зоной горения и зоной газификации и, следовательно, интенсифицирует лучистый теплообмен между ними.

Организованное в газогенераторе смесеобразование за счет установки нескольких групп форсунок с разной ориентацией относительно его продольной оси обеспечивает определенную степень неравномерности соотношения компонентов топлива в поперечном сечении газогенератора, что способствует протеканию процессов горения и газификации параллельно-последовательно и в итоге увеличивает содержание энергетического газа на выходе газогенератора. Установленная в газогенераторе футеровка обеспечивает теплоизоляцию камеры для уменьшения потерь тепла через его наружную стенку. Наличие нескольких групп форсунок с отдельными подводами топлива позволяет осуществлять ступенчатый запуск газогенератора и регулирование его тепловой мощности.

Принципиальная схема конструкции предлагаемого газогенератора представлена на прилагаемом чертеже.

Газогенератор содержит форсуночную головку 1, соединенную с камерой 2 и выходным конусом 3. В нижней части форсуночной головки 1 установлена центральная форсунка 4, вокруг которой концентрично установлена первая группа форсунок 5, коллектор подвода воздуха 6, запальное устройство 7, стабилизатор 8. В верхней части форсуночной головки 1 установлена вторая группа форсунок 9, коллектор подвода воздуха 10, коллектор дополнительного вдува воздуха 11 с отверстиями 12 встречного вдува воздуха. Первая группа форсунок 5 соединена с коллектором подачи ВУТ 13 посредством линий подвода 14. Вторая группа форсунок 9 соединена с коллектором подачи ВУТ 15 посредством линий подвода 16.

Газогенератор работает следующим образом. Пусковое горючее и воздух подаются в запальное устройство 7, где происходит воспламенение и горение смеси пускового горючего и воздуха. Затем пусковое горючее и воздух подаются в центральную форсунку 4, создающая смесь пускового горючего и воздуха, которая воспламеняется от факела запального устройства 7 и горит, причем зона горения данной смеси устанавливается на стабилизаторе 8. Продукты сгорания смеси пускового горючего и воздуха нагревают стенки камеры 2 до необходимой температуры. Затем в газогенератор подаются ВУТ через коллектор подачи ВУТ 13 по линиям подвода 14 в первую группу форсунок 5, воздух через коллектор подвода воздуха 6 в первую группу форсунок 5, ВУТ через коллектор подачи ВУТ 15 по линиям подвода 16 во вторую группу форсунок 9, воздух через коллектор подвода воздуха 10 во вторую группу форсунок 9, воздух через коллектор дополнительного вдува воздуха 11 и отверстия 12 встречного вдува воздуха. Двухкомпонентные форсунки пневматического типа первой группы форсунок 5 и второй группы форсунок 9 распыляют водоугольное топливо воздухом, полученная смесь горит в образовавшейся зоне горения, а остающийся уголь из зоны горения затем газифицирутся в зоне газификации, в результате чего на выходе газогенератора образуется энергетический газ, который может быть, например, отсепарирован от золы и направлен потребителю.

Предлагаемый газогенератор был спроектирован, изготовлен и испытан в виде демонстрационной установки.

Использование изобретения позволит упростить конструкцию и повысить кпд газогенератора.

Похожие патенты RU2510414C1

название год авторы номер документа
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА ИЗ ВОДОУГОЛЬНОГО ТОПЛИВА 2002
  • Кондратьев А.С.
  • Наумова Е.А.
  • Петраков А.П.
RU2217477C1
СПОСОБ И УСТРОЙСТВО ДЛЯ СЖИГАНИЯ ВОДОУГОЛЬНОГО ТОПЛИВА 2008
  • Дубинский Юрий Нафтулович
  • Еманаков Илья Владимирович
  • Карпов Евгений Георгиевич
  • Листратов Игорь Васильевич
  • Серант Феликс Анатольевич
RU2415338C2
КОТЁЛ ДЛЯ СОВМЕСТНОГО СЖИГАНИЯ ПЫЛЕУГОЛЬНОГО И ВОДОУГОЛЬНОГО ТОПЛИВА 2022
  • Дектерев Александр Анатольевич
  • Кузнецов Виктор Александрович
  • Алексеенко Сергей Владимирович
  • Мальцев Леонид Иванович
RU2795413C1
СПОСОБ СОВМЕСТНОГО СЖИГАНИЯ ПЫЛЕУГОЛЬНОГО И ВОДОУГОЛЬНОГО ТОПЛИВА 2022
  • Дектерев Александр Анатольевич
  • Кузнецов Виктор Александрович
  • Алексеенко Сергей Владимирович
  • Мальцев Леонид Иванович
RU2798651C1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ОТРАБОТАННОГО АКТИВИРОВАННОГО УГЛЯ С ПОЛУЧЕНИЕМ КАЛОРИЙНОГО ТОПЛИВА 2011
  • Кацнельсон Леонид Овсеевич
  • Савченко Георгий Эдуардович
  • Иванов Константин Новомирович
  • Левашов Андрей Сергеевич
RU2458860C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА ИЗ ВОДОУГОЛЬНОЙ СУСПЕНЗИИ 2002
  • Диденко А.Н.
  • Кондратьев А.С.
  • Петраков А.П.
RU2233312C1
СПОСОБ СЖИГАНИЯ ЖИДКОГО УГОЛЬНОГО ТОПЛИВА 2014
  • Лунев Владимир Иванович
  • Лунев Сергей Владимирович
  • Загнеев Петр Степанович
  • Загнеев Денис Петрович
  • Усенко Александр Иванович
  • Усенко Андрей Александрович
RU2552016C2
УСТРОЙСТВО ДЛЯ СЖИГАНИЯ ВОДОУГОЛЬНОГО ТОПЛИВА (ВАРИАНТЫ) 2012
  • Алексеенко Сергей Владимирович
  • Мальцев Леонид Иванович
  • Кравченко Игорь Вадимович
  • Кравченко Антон Игоревич
  • Карташова Лариса Викторовна
RU2518754C2
ЦИКЛОННЫЙ ПРЕДТОПОК КОТЛА 1990
  • Хидиятов А.М.
  • Бутаков Н.Я.
RU2013691C1
СПОСОБ ВОСПЛАМЕНЕНИЯ И СТАБИЛИЗАЦИИ ГОРЕНИЯ УГЛЕРОДОСОДЕРЖАЩЕГО ЖИДКОГО ТОПЛИВА В ФОРКАМЕРЕ 2002
  • Диденко А.Н.
  • Кондратьев А.С.
  • Петраков А.П.
RU2229058C1

Реферат патента 2014 года ГАЗОГЕНЕРАТОР

Изобретение относится к теплоэнергетике, а именно к устройствам для получения энергетического газа путем смешения водоугольного топлива и воздуха с последующим горением этой смеси. Газогенератор выполнен в виде единой камеры 2 с футеровкой, несколькими группами 4, 5, 9 двухкомпонентных форсунок пневматического типа и отверстиями 12 встречного вдува воздуха. При таком исполнении зона горения и зона газификации организованы внутри единого объема камеры 2. Изобретение обеспечивает упрощение конструкции и повышение кпд газогенератора для получения энергетического газа из водоугольного топлива. 1 ил.

Формула изобретения RU 2 510 414 C1

Газогенератор, содержащий камеру газификации, линии подвода водоугольного топлива и группы смесительных элементов-форсунок, отличающийся тем, что в нем смесительные элементы выполнены в виде двухкомпонентных форсунок пневматического типа, которые установлены в форсуночной головке группами с отдельными линиями подвода водоугольного топлива к каждой из них, причем центральная форсунка и установленное в форсуночной головке запальное устройство имеют систему подвода пускового горючего, на форсуночной головке вокруг центральной форсунки установлен стабилизатор фронта пламени, первая группа форсунок расположена вокруг центральной форсунки концентрично в форсуночной головке, форсунки второй группы установлены в верхней части форсуночной головки газогенератора и направлены под разными углами к его продольной оси, а под этой группой форсунок установлен коллектор с отверстиями встречного дополнительного вдува воздуха в сторону форсуночной головки.

Документы, цитированные в отчете о поиске Патент 2014 года RU2510414C1

Аппарат для обогащения воздуха кислородом 1946
  • Гуревич Я.С.
SU81727A1
ФОРСУНКА ДЛЯ ГАЗОГЕНЕРАТОРА 2006
  • Спруз Кеннет М.
  • Фарханджи Шахрам
  • Мэтьюс Дэвид Р.
RU2400670C2
Способ совместной газификации твердого и жидкого топлива 1960
  • Маликов К.В.
SU134796A1
US 6013158 A1, 11.01.2000
US 20120023823 A1, 02.02.2012.

RU 2 510 414 C1

Авторы

Жигалов Андрей Евгеньевич

Исаев Эдуард Анатольевич

Пиунов Валерий Юрьевич

Плечев Андрей Николаевич

Поташев Евгений Геннадиевич

Даты

2014-03-27Публикация

2012-10-10Подача