СПОСОБ ОПРЕДЕЛЕНИЯ МАССОВОГО РАСХОДА ВОДЯНОГО ПАРА НА ВУЛКАНАХ Российский патент 2014 года по МПК G01V9/00 G01V99/00 

Описание патента на изобретение RU2511024C2

Изобретение относится к способам количественной оценки природных процессов, в частности к определению массового расхода водяного пара на вулканах. Изменение расхода газа отмечалось как предвестник готовящегося извержения, и поэтому регулярные измерения расхода газа на вулкане необходимы не только для фундаментального изучения природных процессов, но и для оценки угрозы безопасности близ расположенного населения.

Известен способ непосредственного измерения массового расхода в соответствии с его определением [1]. На устье фумаролы измеряется площадь сечения потока, скорость потока, а массовый расход определяется интегрированием по площади поперечного сечения потока произведения скорости на плотность. При этом плотность потока определяется как плотность водяного пара из уравнения состояния газа по результатам измерения температуры потока и атмосферного давления [2].

На практике измерения расхода этим способом редки, потому что устье фумаролы труднодоступно, выполнение измерения требует альпинистской подготовки.

Предлагаемый способ лишен этого недостатка. Сущность метода в том, что измерения производят в сечении, расположенном не в устье фумаролы [3], а дистанционно на видимом участке парового шлейфа.

Вблизи устья поток газа состоит из перегретого пара и бесцветный. Смешиваясь с воздухом, пар охлаждается и становится видимым, образуя паровой шлейф. Тепло от фумаролы создает восходящую конвективную струю [3]. Далее по потоку продуцируемый фумаролой водяной пар смешивается с окружающим воздухом, охлаждается, становится насыщенным и видимым. При дальнейшем движении количество примешивающегося воздуха становится столь большим, что водяной пар в шлейфе перестает быть насыщенным и шлейф снова становится прозрачным, невидимым. Дальняя часть шлейфа может быть видна как горизонтальная, а может стать прозрачной и ранее, на участке подъема.

Рассмотрим средний (видимый) участок потока, где смесь газов состоит из насыщенного водяного пара и сухого воздуха. Так как окружающий воздух имеет некоторую влажность, то в смеси в шлейфе надо выделять сухой воздух, водяной пар из окружающего воздуха и водяной пар, продуцируемый фумаролой. В сечении потока шлейфа кроме сухого воздуха и насыщенного пара находятся капли жидкой воды. Именно они отвечают за видимость шлейфа. Концентрацией этой воды пренебрегаем, полагая, что, как и в облаках, она относительно мала.

Определим новый параметр недосыщенность - концентрацию водяного пара, которую надо добавить в воздух, чтобы он стал насыщенным, или концентрацию пара, продуцируемого фумаролой и содержащегося в выбранном сечении парового шлейфа.

Выведем выражение зависимости недосыщенности от температуры шлейфа. Пусть t2 - температура шлейфа. В соответствии с зависимостью давления от температуры на линии насыщения (формула Магнуса)

E = E 0 10 7.45 t 235 + t

где Е0=6.1 мбар, t - температура, °С,

определим парциальное давление водяного пара Е2 при этой температуре. Вычитая Е2 из атмосферного Р, согласно закону Дальтона получим парциальное давление сухого воздуха (Р-Е2) и определим из уравнения состояния газа плотность пара

m n = E 2 μ R T 2

и плотность сухого воздуха

m в = ( P E 2 ) μ в R T 2

Заметим, что плотности пара и воздуха в смеси газов являются и их концентрациями в смеси.

Влажный воздух поступает в шлейф, где температура t2 отличается от температуры в атмосфере t. При влажности ϕ соотношение пара к сухому воздуху выразим через их парциальные давления ϕЕ и (Р-ϕЕ))

β m в = ϕ E μ ( P E 2 ) ( P ϕ E ) μ в

где молекулярные веса пара µ и сухого воздуха µв.

В шлейф часть пара попала не из пара, продуцируемого фумаролой, а из окружающего воздуха. Эта часть попадает в шлейф с тем же соотношением β к сухому воздуху и равна

β m в = ϕ E μ ( P E 2 ) ( P ϕ E ) R T 2

Недосыщенность воздуха при температуре шлейфа будет равна разности плотности пара в шлейфе и концентрации пара, вовлеченного с окружающим воздухом, то есть (mn-βmв) или в виде

N e d = μ R T 2 ( E 2 ϕ E ( P E 2 ) ( P ϕ E ) )

через

Т2 - абсолютная температура в шлейфе,

Е2 - упругость водяного пара в шлейфе,

Е - упругость водяного пара в атмосфере,

Р - атмосферное давление,

ϕ - влажность воздуха,

µ - молекулярный вес пара,

R - универсальная газовая постоянная.

Далее, зная площадь сечения S, скорость потока V и недосыщенность Ned, определяем расход продуцируемого пара Q:

Q = N e d V S

В основе способа лежит измерение температуры в средней - видимой части шлейфа. Способ предполагает использование видеокамеры и тепловизора. По профилю распределения температуры в проекции поперечного сечения шлейфа определяется диаметр шлейфа (потока) и температура (средняя) в шлейфе. Скорость в шлейфе, например, с помощью видеокамеры измеряется по скорости перемещения пульсаций или мелких турбулентностей на внешности шлейфа. Температура и влажность воздуха определяется по данным ближайшей метеостанции.

Внутренней проверкой достоверности окончательного результата является постоянство значения продуцируемого расхода, рассчитанного на различных сечениях по высоте шлейфа.

Литература

1. Расход. Большая советская энциклопедия. М.: «Советская энциклопедия», 1975, т.21, с.498.

2. Муравьев А.В., Поляк Б.Г., Турков В.П., Козловцева С.В. Повторная оценка тепловой мощности фумарольной деятельности на вулкане Мутновский (Камчатка). // Вулканология и сейсмология, 1983, №5, с.53, 54.

3. Федотов С.А. Оценки выноса тепла и пирокластики вулканическими извержениями и фумаролами по высоте их струй и облаков. // Вулканология и сейсмология, 1982, №4, с.3-28.

Похожие патенты RU2511024C2

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНВЕКТИВНОГО ТЕПЛООБМЕНА И СКОРОСТИ ИСПАРЕНИЯ ВЛАГИ В СИСТЕМЕ "ЧЕЛОВЕК - ОДЕЖДА - ОКРУЖАЮЩАЯ СРЕДА" 2002
  • Уваров Г.А.
  • Уваров А.В.
RU2205403C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ДВУХФАЗНЫХ ПОТОКОВ СПЛОШНЫХ СРЕД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Майсурадзе П.А.
  • Кикнадзе Г.И.
  • Гачечиладзе И.А.
  • Плещ А.Г.
  • Майсурадзе А.П.
RU2037811C1
СПОСОБ ОПРЕДЕЛЕНИЯ МОЛЕКУЛЯРНО-МАССОВОГО РАСПРЕДЕЛЕНИЯ СЕТЧАТЫХ ПОЛИМЕРОВ 1989
  • Ольхов Ю.А.
  • Иржак В.И.
  • Батурин С.М.
RU2023255C1
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЧИВАЕМОСТИ МЕЛКОДИСПЕРСНЫХ ПОРОШКОВ 2013
  • Архипов Владимир Афанасьевич
  • Змановский Сергей Владиславович
  • Палеев Дмитрий Юрьевич
  • Патраков Юрий Федорович
  • Усанина Анна Сергеевна
RU2522805C1
СПОСОБ ИЗМЕРЕНИЯ МУЛЬТИФАЗНОГО ФЛЮИДА В СКВАЖИНЕ 2010
  • Джу Тим Онг
RU2544180C2
Способ переработки вулканического газа с извлечением соединений рения 2019
  • Солдатов Константин Алексеевич
RU2701009C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СООТНОШЕНИЯ РАСХОДОВ КОМПОНЕНТОВ ДВУХФАЗНОЙ СРЕДЫ 1991
  • Алексеев А.И.
  • Мамедов И.С.
  • Филиппов Ю.П.
RU2010169C1
СПОСОБ ОПРЕДЕЛЕНИЯ РАЦИОНАЛЬНЫХ ПАРАМЕТРОВ РЕЖИМОВ ВЛАЖНОЙ ОЧИСТКИ ПРОТОЧНОГО ТРАКТА ГТД 2012
  • Силаев Борис Михайлович
  • Коротков Владимир Васильевич
  • Крикунов Валентин Петрович
  • Мальцев Евгений Николаевич
RU2540521C2
СПОСОБ ВЫБОРА ПОГЛОЩАЮЩИХ КОМПОЗИТНЫХ БАРЬЕРОВ ДЛЯ УПАКОВКИ 2008
  • Соловьев Станислав Е.
  • Пауэрс Томас
  • Инкорвиа Самьюэл А.
RU2433864C2
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА И МАССОВОГО ПАРОСОДЕРЖАНИЯ ПАРОЖИДКОСТНОГО ПОТОКА 1998
  • Елин Н.Н.
  • Кормашова Е.Р.
RU2164341C2

Реферат патента 2014 года СПОСОБ ОПРЕДЕЛЕНИЯ МАССОВОГО РАСХОДА ВОДЯНОГО ПАРА НА ВУЛКАНАХ

Изобретение относится к способам количественной оценки природных процессов и может быть использовано для определения массового расхода водяного пара на вулканах. Сущность: на видимом участке парового шлейфа вулкана измеряют его поперечное сечение, скорость потока и температуру. В окружающем воздухе измеряют влажность, температуру и атмосферное давление. По измеренным величинам рассчитывают недосыщенность воздуха при температуре парового шлейфа. Используя значения недосыщенности воздуха, рассчитывают массовый расход водяного пара. Технический результат: снижение трудозатрат при определении массового расхода водяного пара на вулканах.

Формула изобретения RU 2 511 024 C2

Способ определения массового расхода водяного пара на вулканах, включающий в себя измерения поперечного сечения, температуры, скорости потока и определение плотности водяного пара, отличающийся тем, что измерения производят в паровом шлейфе, определение плотности продуцируемого пара получают через недосыщенность воздуха с учетом влажности, температуры воздуха и атмосферного давления.

Документы, цитированные в отчете о поиске Патент 2014 года RU2511024C2

В.А.Дрознин, И.К.Дубровская
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
(дистанционные измерения) / Материалы международного симпозиума "Проблемы эксплозивного вулканизма", Петропавловск-Камчатский, 2006, стр.120-126
Е.И.Гордеев, В.А.Дрознин
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
/ Доклады РАН, 2010, т
Разборная вагранка 1925
  • Романов А.Р.
SU430A1

RU 2 511 024 C2

Авторы

Дрознин Валерий Аркадьевич

Даты

2014-04-10Публикация

2012-03-07Подача