АППАРАТ ВОЗДУШНОГО ОХЛАЖДЕНИЯ ГАЗА Российский патент 2014 года по МПК F28D21/00 

Описание патента на изобретение RU2518708C1

Изобретение относится к области энергетики, а именно к аппаратам воздушного охлаждения (АВО), применяемым для охлаждения природного газа.

В общем случае АВО представляет собой аппарат, состоящий из двух основных частей: поверхности охлаждения (теплообменные секции) и системы подачи воздуха.

Основные конструктивные различия АВО заключаются в пространственном расположении теплообменных секций и взаимном расположении теплообменных секций и вентилятора. По виду взаимного направления движения теплоносителей АВО выполнены как аппараты перекрестного типа, в которых теплоносители движутся во взаимно перпендикулярных направлениях. Охлаждающий воздух совершает однократный ток через пучок теплообменных труб, а горячий технологический продукт, например газ, движется внутри труб.

Известен аппарат воздушного охлаждения газа (патент №2075714 RU), содержащий теплообменные секции, закрепленные в трубных решетках, с камерами подвода и отвода теплоносителя, вентиляторы с приводом и опорную металлоконструкцию.

Известны аппараты воздушного охлаждения с горизонтальным расположением теплообменных секций нагнетательного типа, в которых вентилятор расположен до теплообменной секции по ходу движения воздуха (например, патент №2200907 RU). Аппараты такого типа являются более простыми и удобными в обслуживании, но потребляют много энергии.

Наиболее близким аналогом по технической сущности и достигаемому результату является аппарат воздушного охлаждения природного газа с коллекторами входа и выхода продукта 2АВГ-75(100), предназначенный для охлаждения газа на компрессорных станциях магистральных газопроводов (В.Б.Кунтыш, А.Н.Бессонный и др. Основы расчета и проектирования теплообменников воздушного охлаждения. - С/П: Недра, 1996, с.84-85, рис.2.37).

Аппарат состоит из горизонтально расположенных секций коллекторного типа, собранных из оребренных биметаллических труб, которые обдуваются потоком воздуха, нагнетаемого снизу осевыми вентиляторами с приводами от тихоходных электродвигателей. Теплообменные секции включают камеры подвода и отвода охлаждаемого газа, содержащие трубные доски с отверстиями, в которых заделаны концы оребренных теплообменных труб. Материал теплообменных труб: внутренних - сталь, оребрения - алюминий.

Недостатками известных АВО являются большое энергопотребление, что делает их дорогими в эксплуатации. Значительно высокая потребляемая мощность привода вентилятора вызвана большим аэродинамическим сопротивлением воздуха при движении его через пучок теплообменных труб. Кроме этого, воздух, набегающий на трубный пучок, имеет неравномерное скоростное поле, что не позволяет эффективно использовать всю теплообменную поверхность. Низкая скорость нагретого воздуха на выходе из теплообменных секций может привести к рециркуляции, то есть к обратному току воздушного потока в зону разрежения на всасе вентилятора, и, следовательно, к энергетическим потерям. К значительным потерям мощности на перемещение теплоносителя (охлаждаемого природного газа) по трубам также приводит увеличение гидравлического сопротивления при распределении газа по трубам пучка из камеры его подвода. Наиболее значительное снижение тепловой эффективности наблюдается в летний период при увеличении температуры наружного воздуха.

Технический результат, достигаемый изобретением, - повышение тепловой эффективности аппарата воздушного охлаждения за счет снижения энергопотребления.

Поставленная задача решается тем, что аппарат воздушного охлаждения газа содержит вентиляторы для подачи внешней охлаждающей среды, преимущественно воздуха, в корпус аппарата, который выполнен в виде секционного сосуда с, по крайней мере, двумя теплообменными секциями, каждая из которых включает камеру входа и камеру выхода охлаждаемого газа, содержащие трубные доски с отверстиями, в которых заделаны концами расположенные в секции рядами по ее высоте образующие пучок одноходовые оребренные теплообменные трубы, которые с боков ограничены продольными стенами каркаса секции, при этом каждая камера входа газа и выхода газа теплообменных секций аппарата имеет соответственно патрубки для присоединения к коллектору подвода газа из подающего газопровода и к коллектору отвода газа, сообщенному на выходе с газопроводом. Каждая камера входа и выхода охлаждаемого газа выполнена длиной, соответствующей ширине теплообменной секции аппарата, и содержит образующую переднюю часть - трубную доску, в которую заделаны концы теплообменных труб, и заднюю часть камеры, образованную преимущественно внешней доской, которая выполнена с отверстиями, соосными отверстиям в трубной доске. В полости теплообменных труб размещены внутренние трубы с продольным оребрением, сообщенные с коллектором входа и выхода теплообменной среды второго контура, при этом длина внутренней трубы превышает длину теплобменной трубы на величину, позволяющую обеспечить ее выход за внешнюю доску через существующие отверстия. Концы внутренних труб имеют возможность сообщения с коллекторами подвода и отвода теплоносителя второго контура, а количество теплообменных труб, разделенных на два контура, и отношение их диаметров подбирается из условия совершения максимально эффективного теплообмена между охлаждаемым газом и более холодным теплоносителем без увеличения гидравлического сопротивления аппарата воздушного охлаждения газа в целом.

Сущность изобретения поясняется чертежами, где

на фиг.1 изображена теплообменная секция, вид сверху;

на фиг.2 изображена теплообменная труба с внутренней трубой теплоносителя 2-го контура, вид А-А.

Теплообменная секция АВО газа 1 включает камеры входа 2 и выхода 3 охлаждаемого газа (конструктивно камера выхода 3 выполнена также, как камера входа 2), содержащие трубные доски 4. Трубные доски 4 выполнены с отверстиями 5, в которых заделаны концами расположенные в секции рядами по ее высоте образующие пучок одноходовые оребренные теплообменные трубы 6. Камера входа 2, помимо трубной доски, содержит заднюю часть - внешнюю доску, которая выполнена с отверстиями, соосными отверстиям в трубной доске.

Камера входа 2 имеет патрубок 7 для присоединения к коллектору подвода газа после компрессорной станции (на чертеже не изображен). Камера выхода 3 конструктивно аналогична камере входа 2 и имеет соответственно патрубок для присоединения к коллектору отвода газа (на чертеже не изображен).

В полости теплообменной трубы 6 размещена внутренняя труба 9 с продольным оребрением, концы которой выведены через существующие отверстия 11 внешней доски 10 камеры входа и выхода.

Внутренняя труба 9 имеет возможность сообщения с коллектором входа 12 и выхода 13 теплоносителя второго контура. Коллектор входа 12 выполнен в виде пустотелого цилиндра и имеет возможность сообщения с внутренними трубами 9, содержит патрубок 14 подвода теплоносителя второго контура. Выходной коллектор 13 конструктивно аналогичен коллектору входа и имеет соответственно патрубок 15 отвода теплоносителя второго контура.

Аппарат воздушного охлаждения газа работает следующим образом.

Охлаждаемый газ из магистрального газопровода после компрессорной станции подается через коллектор подвода газа в камеру входа 2 теплообменной секции АВО газа 1. Из камеры входа 2 охлаждаемый газ распределяется по теплообменным трубам 6. Теплообменная секция АВО газа 1, собранная из теполобменных труб 6, обдувается потоком охлаждающего воздуха, нагнетаемого снизу осевыми вентиляторами с приводами от тихоходных электродвигателей.

Охлажденный теплоноситель второго контура (топливный газ и т.п.) поступает во входной коллектор 12. Из входного коллектора 12 теплоноситель второго контура распределяется по внутренним трубам 9, расположенным в полости теплообменных труб 6. Проходя через внутреннее межтрубное пространство, образованное внутренней стенкой теплообменной трубы 6 и наружной поверхностью внутренней трубы 9, теплоноситель второго контура забирает тепло от теплообменной поверхности, нагретой проходящим внутри труб охлаждаемым газом. Теплоноситель второго контура, пройдя по внутренним трубам 9, собирается в выходном коллекторе 13 и отводится через патрубок 15 в коммуникации компрессорной станции.

Охлаждающий теплоноситель (воздух) поступает в межтрубное пространство теплообменной секции АВО газа 1. Проходя через наружное межтрубное пространство, омывая теплообменные трубы 6, воздух забирает тепло от теплообменной поверхности, нагретой проходящим внутри труб охлаждаемым газом.

Пройдя по трубам и охладившись, газ поступает в выходную камеру 3, откуда через патрубок 8 и коллектор отвода газа подается в магистральный газопровод.

При этом за счет теплообмена охлаждаемого газа с теплоносителем второго контура происходит дополнительное охлаждение газа после компрессорной станции и нагрев теплоносителя второго контура, к примеру топливного газа газоперекачивающих агрегатов компрессорной станции.

Предлагаемый аппарат воздушного охлаждения газа за счет оптимизации параметров теплообменных элементов обеспечивает в процессе его эксплуатации повышение теплопроизводительности и, таким образом, за счет более эффективного теплообмена охлаждаемого газа с наружной поверхностью внутренней трубы теплоносителя второго контура в межтрубном пространстве трубных досок позволяет уменьшить энергопотребление.

Таким образом, данная конструкция аппарата воздушного охлаждения газа является экономичной.

Похожие патенты RU2518708C1

название год авторы номер документа
АППАРАТ ВОЗДУШНОГО ОХЛАЖДЕНИЯ ГАЗА 2004
  • Овчар В.Г.
  • Даниленко В.Г.
  • Белоусов В.П.
  • Берестов В.А.
  • Терехов В.М.
  • Шляхов С.Б.
RU2266494C1
АППАРАТ ВОЗДУШНОГО ОХЛАЖДЕНИЯ ГАЗА 2004
  • Овчар В.Г.
  • Даниленко В.Г.
  • Белоусов В.П.
  • Лифанов В.А.
  • Терехов В.М.
  • Шляхов С.Б.
RU2266495C1
Способ повышения аэротермодинамической эффективности аппарата воздушного охлаждения и устройство для его реализации 2019
  • Лифанов Александр Викторович
  • Макаров Николай Владимирович
  • Матеров Артём Юрьевич
  • Макаров Владимир Николаевич
  • Угольников Александр Викторович
  • Свердлов Илья Вадимович
RU2716341C1
ТЕПЛООБМЕННЫЙ АППАРАТ ТИПА АППАРАТА ВОЗДУШНОГО ОХЛАЖДЕНИЯ ГАЗА 2004
  • Лифанов В.А.
  • Берестов В.А.
  • Шляхов С.Б.
RU2266488C1
АППАРАТ ВОЗДУШНОГО ОХЛАЖДЕНИЯ ГАЗА (ВАРИАНТЫ) 2004
  • Селиванов Николай Павлович
RU2331830C2
Аппарат воздушного охлаждения газа 2016
  • Черный Андрей Петрович
  • Зарипов Юлай Мидхатович
  • Наумов Андрей Михайлович
  • Шишкин Евгений Сергеевич
RU2617668C1
Аппарат воздушного охлаждения 2019
  • Бальчугов Алексей Валерьевич
  • Кустов Борислав Олегович
  • Бадеников Артем Викторович
RU2705787C1
СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОВОГО, ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ 2008
RU2373380C1
СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОВОГО, ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ 2008
RU2373381C1
СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОВОГО, ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ 2008
RU2372473C1

Иллюстрации к изобретению RU 2 518 708 C1

Реферат патента 2014 года АППАРАТ ВОЗДУШНОГО ОХЛАЖДЕНИЯ ГАЗА

Изобретение относится к области энергетики, а именно к аппаратам воздушного охлаждения (АВО), применяемым для охлаждения природного газа. Охлаждаемый газ из магистрального газопровода после компрессорной станции подается в теплообменные трубы теплообменной секции. Дополнительно охлажденный теплоноситель второго контура (топливный газ и т.п.) поступает во внутренние трубы, расположенные в полости теплообменных труб. За счет теплообмена охлаждаемого газа с теплоносителем второго контура происходит дополнительное охлаждение газа после компрессорной станции и нагрев теплоносителя второго контура. Технический результат - повышение тепловой эффективности за счет снижения энергопотребления. 2 ил.

Формула изобретения RU 2 518 708 C1

Аппарат воздушного охлаждения газа, характеризующийся тем, что он содержит вентиляторы для подачи внешней охлаждающей среды, преимущественно воздуха, в корпус аппарата, который выполнен в виде секционного сосуда с, по крайней мере, двумя теплообменными секциями, каждая из которых включает камеру входа и камеру выхода охлаждаемого газа, содержащие трубные доски с отверстиями, в которых заделаны концами расположенные в секции рядами по ее высоте образующие пучок одноходовые оребренные теплообменные трубы, которые с боков ограничены продольными стенами каркаса секции, при этом каждая камера входа газа и выхода газа теплообменных секций аппарата имеет соответственно патрубки для присоединения к коллектору подвода газа из подающего газопровода и к коллектору отвода газа, сообщенному на выходе с газопроводом, причем каждая камера входа и выхода охлаждаемого газа выполнена длиной, соответствующей ширине теплообменной секции аппарата, и содержит образующую переднюю часть - трубную доску, в которую заделаны концы теплообменных труб, и заднюю часть камеры, образованную преимущественно внешней доской, которая выполнена с отверстиями, соосными отверстиям в трубной доске, в полости теплообменных труб размещены внутренние трубы с продольным оребрением, сообщенные с коллектором входа и выхода теплообменной среды второго контура, при этом длина внутренней трубы превышает длину теплобменной трубы на величину, позволяющую обеспечить ее выход за внешнюю доску через существующие отверстия, концы внутренних труб имеют возможность сообщения с коллекторами подвода и отвода теплоносителя второго контура, при этом количество теплообменных труб, разделенных на два контура, и отношение их диаметров подбирается из условия совершения максимально эффективного теплообмена между охлаждаемым газом и более холодным теплоносителем без увеличения гидравлического сопротивления аппарата воздушного охлаждения газа в целом.

Документы, цитированные в отчете о поиске Патент 2014 года RU2518708C1

Машина для настилания друг на друга слоев резинового или тканевого материала 1933
  • Андреев В.П.
SU39385A1
Прибор с двумя призмами 1917
  • Кауфман А.К.
SU27A1
Станок для обкатки переводных рисунков на фарфоровой и фаянсовой посуде 1928
  • Жгулев В.Ф.
SU13566A1
АППАРАТ ВОЗДУШНОГО ОХЛАЖДЕНИЯ 1993
  • Андреевский В.В.
  • Баранов Ю.М.
  • Игнатьев М.П.
  • Дубиновский И.В.
RU2075714C1
CN 201434612 Y (SHANXI FENXI THERMAL ENGINEERING CO LTD) 31.03.2010
JP 2003161209 A (HIMO MOTORS LTD) 06.06.2003

RU 2 518 708 C1

Авторы

Корнеев Сергей Иванович

Шурухин Игорь Николаевич

Шабанов Константин Юрьевич

Позднякова Мария Николаевна

Даты

2014-06-10Публикация

2012-12-29Подача