СПОСОБ ОЧИСТКИ НАРУЖНОЙ ПОВЕРХНОСТИ ИЗ АЛЮМИНИЯ И АЛЮМИНИЕВЫХ СПЛАВОВ АППАРАТОВ ВОЗДУШНОГО ОХЛАЖДЕНИЯ Российский патент 2014 года по МПК F28G9/00 B08B3/02 C23G1/12 

Описание патента на изобретение RU2520839C1

Изобретение относится к способам для очистки наружной поверхности из алюминия и алюминиевых сплавов аппаратов воздушного охлаждения (далее - АВО). АВО общего назначения относятся к теплообменному оборудованию и предназначены для охлаждения газов и жидкостей, конденсирования паровых и парожидкостных средств в технологических процессах химической, нефтехимической; нефтеперерабатывающей, нефтяной и газовой отраслей промышленности. В АВО охлаждаемый технологический продукт движется внутри биметаллических оребренных труб; передавая через их стенки теплоту охлаждающему агенту. Наружную поверхность биметаллических оребренных труб изготавливают из алюминия и алюминиевых сплавов. В качестве охлаждающего агента используется атмосферный воздух. АВО изготавливаются с теплообменными секциями рабочим давлением от 0,6 до 10 МПа (от 6 до 100 кгс/см2), от одноходовых до 8-ходовых, 4-, 6- и 8-рядными по расположению теплообменных труб в секциях. С увеличением рядности расположения теплообменных труб увеличивается сложность очистки наружной поверхности АВО. Другим фактором, усложняющим очистку, является коэффициент оребрения труб (отношение полной наружной поверхности, включая и ребра, к поверхности такой же длины гладкой трубы). АВО выпускают с коэффициентами оребрения труб: 9; 14,6; 20. Возрастающие требования потребителей данной продукции к надежности и эффективности АВО могут найти свое решение в предлагаемом способе.

Известен гидродинамический способ очистки теплообменников под давлением смесью, состоящей из моющего кислотного раствора и абразивной примеси в виде кварцевого песка (Патент на изобретение РФ №2366881). Применение этого способа ограничено возможной высокой степенью износа поверхности из алюминия и алюминиевых сплавов, а также возможным забиванием кварцевым песком поверхностей между ребрами.

Известен способ очистки поверхности изделий из алюминия и алюминиевых сплавов, включающий промывку поверхности водой и контактирование поверхности с чистящим составом при достаточной температуре и в течение достаточного периода времени для очистки (Патент на изобретение РФ №2359070). При этом поверхность изделий, в основном контейнеры и емкости из алюминия и алюминиевых сплавов после изготовления путем волочения и формования, подвергают контакту с чистящим составом при температуре от 15,6°C до 82,2°C, наиболее предпочтительно при высокой температуре. Известный способ не обеспечит эффективную очистку изделий с высокой степенью оребренной поверхностью, таких как АВО.

Задачей предлагаемого изобретения является разработка технологии очистки и моющего состава, применяемого в способе, позволяющие в совокупности обеспечить высокое качество очистки изделий с высокой степенью оребренной поверхностью, таких как АВО.

Технический результат заключается в повышении эффективности очистки проблемных наружных поверхностей теплообменников, в частности поверхностей, расположенных между ребрами теплообменников, особенно для АВО с высоким коэффициентом оребрения труб и 4-, 6- и 8-рядными по расположению теплообменных труб.

Технический результат достигается тем, что в способе очистки наружной поверхности из алюминия и алюминиевых сплавов аппаратов воздушного охлаждения, включающем обработку поверхности моющим средством и промывку водой, согласно изобретению очистку осуществляют в три этапа, при этом на первом и третьем этапах осуществляют струйную промывку поверхности нагретой водой или смесью воды с водяным паром при давлении струи 20-150 бар, а на втором этапе осуществляют струйную обработку поверхности 0,25-1,5% водным раствором кислотного моющего средства, нагретым до температуры 20-60°C с давлением струи 20-150 бар с выдержкой в течение 10-30 минут, при следующем соотношении компонентов моющего средства, мас.%: ортофосфорная кислота 20,0-25,0, азотная кислота 8,0-15,0, оксиэтилидендифосфоновая кислота 2,0-4,5, неионогенное поверхностно-активное вещество 0,05-0,11, вода до 100.

В способе на первом и третьем этапах проводят струйную промывку поверхности водой, нагретой до температуры 20-100°C.

В способе на первом и третьем этапах проводят струйную промывку поверхности смесью воды с водяным паром, нагретой до температуры 100-155°C.

Первый этап струйной промывки поверхности водой, нагретой до температуры 20-100°C, или смесью воды с водяным паром, нагретой до температуры 100-155°C с давлением струи 20-150 бар, обеспечивает смывку легко удаляемых отложений, обеспечивает проводимую на втором этапе проходимость между рядами оребрения раствора кислотного моющего средства. Кроме этого струйная промывка поверхности горячей водой или смесью воды с водяным паром обеспечивает последующее эффективное взаимодействие раствора кислотного моющего средства с трудно удаляемыми отложениями. Струйная промывка поверхности на третьем этапе водой, нагретой до температуры 20-100°C, или смесью воды с водяным паром, нагретой до температуры 100-155°C с давлением струи 20-150 бар, обеспечивает полное удаление кислотного моющего средства, тем самым исключает возможность последующего воздействия кислотного моющего средства на поверхность теплообменника.

Для приготовления моющего средства используют концентрированную ортофосфорную и азотную кислоты, выпускаемые промышленностью; оксиэтилированные алкилфенолы в качестве неионогенного поверхностно-активного вещества (эмульгатора) преимущественно марок ОП-7 и ОП-10; оксиэтилидендифосфоновая кислота или ее натриевая соль служит комплексообразователем. Комплексообразователь является ингибитором коррозии для кислой среды, его введение в указанном пределе поддерживает кислотность среды не ниже pH 4,0. Рабочие растворы средства готовят в виде 0,25-1,5%-ных водных растворов средства в зависимости от сложности загрязнения поверхности. Концентрированные составы (1-1,5%) используют для обработки более загрязненных внешних поверхностей, а также в зависимости от коэффициента оребрения труб и рядности их расположения.

Для осуществления предлагаемого способа в приведенных ниже примерах были использованы аппараты высокого давления Karcher HDC 695 М Есо, имеющие следующие характеристики: производительность - 800 л/час; рабочее давление - до 150 бар; подогрев воды до 155°C.

Опробование предлагаемого способа проводили на шести модификациях аппаратов воздушного охлаждения зигзагообразных (общие технические условия по ГОСТ Р 51364-99) с коэффициентами оребрения труб: 9; 14,6; 20 и 4-, 6- и 8-рядными по расположению теплообменных труб. Вначале проводили визуальный осмотр, затем пробовалась струя с наименьшей температурой и давлением с постоянным увеличением этих параметров, и выбирался оптимальный вариант по температуре и давлению. Эффективность очистки определяли по изменению разности температур на входе и выходе из АВО до очистки и после очистки.

Пример 1. Очистке подвергался аппарат АВЗ-9-4 с коэффициентом оребрения труб 9 и 4-рядным по расположению теплообменных труб. Аппарат АВЗ-9-4 был установлен на открытой площадке. Температура окружающего воздуха 24°C, температура на поверхности аппарата 35°C. На первом и третьем этапах проводили струйную промывку поверхности водой, нагретой до температуры 50°C с давлением струи 50 бар. На втором этапе проводили струйную обработку поверхности 1,0% водным раствором моющего средства, нагретым до температуры 30°C с давлением струи 50 бар с выдержкой времени 15 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 20,0; азотная кислота 10,0; оксиэтилидендифосфоновая кислота 2,0; неионогенное поверхностно-активное вещество (ОП-7) 0,05; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 75°C. Разность температур на входе и выходе из АВО после очистки составляла 91°C.

Пример 2. Очистке подвергался аппарат АВЗ-9-8 с коэффициентом оребрения труб 9 и 8-рядным по расположению теплообменных труб. Аппарат АВЗ-9-8 был установлен на открытой площадке. Температура окружающего воздуха 26°C, температура на поверхности аппарата 39°C. На первом и третьем этапах проводили струйную промывку поверхности водой, нагретой до температуры 70°C с давлением струи 80 бар. На втором этапе проводили струйную обработку поверхности 1,0% водным раствором моющего средства, нагретым до температуры 30°C с давлением струи 80 бар с выдержкой времени 20 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 22,0; азотная кислота 12,0; оксиэтилидендифосфоновая кислота 3,0; неионогенное поверхностно-активное вещество (ОП-7) 0,07; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 78°C. Разность температур на входе и выходе из АВО после очистки составляла 95°C.

Пример 3. Очистке подвергался аппарат АВЗ-14,6-6 с коэффициентом оребрения труб 14,6 и 6-рядным по расположению теплообменных труб. Аппарат АВЗ-14,6-6 был установлен на открытой площадке. Температура окружающего воздуха 18°C, температура на поверхности аппарата 29°C. На первом и третьем этапах проводили струйную промывку поверхности водой, нагретой до температуры 90°C с давлением струи 100 бар. На втором этапе проводили струйную обработку поверхности 1,2% водным раствором моющего средства, нагретым до температуры 33°C с давлением струи 80 бар с выдержкой времени 23 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 22,0; азотная кислота 12,0; оксиэтилидендифосфоновая кислота 3,0; неионогенное поверхностно-активное вещество (ОП-7) 0,07; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 74°C. Разность температур на входе и выходе из АВО после очистки составляла 91°C.

Пример 4. Очистке подвергался аппарат АВЗ-14,6-8 с коэффициентом оребрения труб 14,6 и 8-рядным по расположению теплообменных труб. Аппарат АВЗ-14,6-8 был установлен на открытой площадке. Температура окружающего воздуха 28°C, температура на поверхности аппарата 36°C. На первом и третьем этапах проводили струйную промывку поверхности водой, нагретой до температуры 100°C с давлением струи 120 бар. На втором этапе проводили струйную обработку поверхности 1,3% водным раствором моющего средства, нагретым до температуры 40°C с давлением струи 90 бар с выдержкой времени 26 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 23,0; азотная кислота 13,0; оксиэтилидендифосфоновая кислота 3,5; неионогенное поверхностно-активное вещество (ОП-7) 0,09; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 77°C. Разность температур на входе и выходе из АВО после очистки составляла 92°C.

Пример 5. Очистке подвергался аппарат АВЗ-20-6 с коэффициентом оребрения труб 20 и 6-рядным по расположению теплообменных труб. Аппарат АВЗ-20-6 был установлен на открытой площадке. Температура окружающего воздуха 13°C, температура на поверхности аппарата 22°C. На первом и третьем этапах проводили струйную промывку поверхности смесью воды с водяным паром, нагретой до температуры 115°C с давлением струи 115 бар. На втором этапе проводили струйную обработку поверхности 1,3% водным раствором моющего средства, нагретым до температуры 44°C с давлением струи 90 бар с выдержкой времени 27 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 24,0; азотная кислота 13,0; оксиэтилидендифосфоновая кислота 3,5; неионогенное поверхностно-активное вещество (ОП-7) 0,09; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 73°C. Разность температур на входе и выходе из АВО после очистки составляла 88°C.

Пример 6. Очистке подвергался аппарат АВЗ-20-8 с коэффициентом оребрения труб 20 и 8-рядным по расположению теплообменных труб. Аппарат АВЗ-20-8 был установлен на открытой площадке. Температура окружающего воздуха 23°C, температура на поверхности аппарата 32°C. На первом и третьем этапах проводили струйную промывку поверхности смесью воды с водяным паром нагретой до температуры 145°C с давлением струи 145 бар. На втором этапе проводили струйную обработку поверхности 1,5% водным раствором моющего средства, нагретым до температуры 47°C с давлением струи 90 бар с выдержкой времени 30 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 25,0; азотная кислота 15,0; оксиэтилидендифосфоновая кислота 4,5; неионогенное поверхностно-активное вещество (ОП-7) 0,11; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 78°C. Разность температур на входе и выходе из АВО после очистки составляла 98°C.

Вывод. С увеличением коэффициента оребрения труб и рядности по расположению теплообменных труб в секциях выявляется необходимость повышения концентраций компонентов моющего средства, увеличения температуры и давления при струйной обработке поверхности на всех этапах осуществления способа. Показано, что на температуру и давление при струйной обработке поверхности также влияют температура окружающего воздуха и температура на поверхности аппарата. Вместе с тем превышение концентраций при минимальных коэффициентах оребрения труб и рядности по расположению теплообменных труб не способствует значительному улучшению технико-экономических показателей, а лишь ведет к увеличению расхода реагентов.

Похожие патенты RU2520839C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ НАРУЖНОЙ ПОВЕРХНОСТИ ТЕПЛООБМЕННЫХ ТРУБ АППАРАТОВ ВОЗДУШНОГО ОХЛАЖДЕНИЯ 2018
  • Соловьёв Евгений Алексеевич
  • Кобзарев Тарас Николаевич
  • Петровский Эдуард Аркадьевич
RU2675913C1
СИСТЕМА ПРОМЫВКИ ОРЕБРЕННОЙ ПОВЕРХНОСТИ ТЕПЛООБМЕННЫХ ТРУБ АППАРАТОВ ВОЗДУШНОГО ОХЛАЖДЕНИЯ 2022
  • Кумицкий Антон Сергеевич
  • Плешивцев Олег Александрович
  • Разин Вадим Александрович
  • Соловьев Александр Анатольевич
RU2791788C1
МОЮЩЕ-ДЕЗИНФИЦИРУЮЩЕЕ СРЕДСТВО "ТИГМА-К" 2002
  • Андреев В.Б.
  • Демидова Л.Д.
RU2217487C1
Система наружной промывки аппарата воздушного охлаждения газа 2016
  • Банкул Николай Викторович
  • Бодров Андрей Игоревич
  • Стельмакова Надежда Олеговна
  • Пузанов Родион Владимирович
RU2656801C1
СПОСОБ ОЧИСТКИ ТЕПЛООБМЕННЫХ ТРУБ АППАРАТОВ ВОЗДУШНОГО ОХЛАЖДЕНИЯ КОМПРЕССОРНЫХ СТАНЦИЙ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ 2005
  • Кудакаев Салих Миневалиевич
  • Мукминов Александр Рашитович
  • Аминев Фарит Миннулович
  • Аскаров Роберт Марагимович
  • Гаррис Нина Александровна
  • Исмагилов Ильдар Галеевич
  • Габдрахманов Альберт Абузарович
  • Файзуллин Саяфетдин Минигулович
RU2302912C2
Кислотное беспенное техническое моющее средство 2023
  • Камаев Андрей Юрьевич
  • Мишкин Роман Николаевич
  • Санжарова Татьяна Викторовна
  • Харина Наталья Олеговна
  • Волочнюк Екатерина Николаевна
RU2814330C1
СПОСОБ ОЧИСТКИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ЦИСТЕРН ОТ ОСТАТКОВ ОРГАНИЧЕСКИХ ПРОДУКТОВ И МОЮЩЕЕ СРЕДСТВО, ИСПОЛЬЗУЕМОЕ В СПОСОБЕ 2007
  • Смолянов Владимир Михайлович
  • Журавлёв Алексей Викторович
  • Новосельцев Дмитрий Вячеславович
  • Груздев Сергей Геннадиевич
RU2357811C1
Средство для химической очистки металлических поверхностей 2016
  • Курко Евгений Александрович
RU2644157C1
УНИВЕРСАЛЬНАЯ МОЮЩАЯ КОМПОЗИЦИЯ "ГЕНС" 2009
  • Савельев Евгений Петрович
  • Столбов Николай Васильевич
  • Прокудин Юрий Александрович
  • Емельянцев Сергей Викторович
  • Росс Марина Юрьевна
RU2452769C2
СПОСОБ УДАЛЕНИЯ ТВЕРДЫХ ШЛАКОВ ИЗ УГОЛЬНОГО КОТЛА И ИЗВЛЕЧЕНИЯ ИЗ НИХ МЕТАЛЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Ивандаев Сергей Иванович
RU2453769C1

Реферат патента 2014 года СПОСОБ ОЧИСТКИ НАРУЖНОЙ ПОВЕРХНОСТИ ИЗ АЛЮМИНИЯ И АЛЮМИНИЕВЫХ СПЛАВОВ АППАРАТОВ ВОЗДУШНОГО ОХЛАЖДЕНИЯ

Изобретение относится к очистке наружной поверхности из алюминия и алюминиевых сплавов аппаратов воздушного охлаждения (далее - АВО). Способ включает обработку поверхности моющим средством и промывку водой, при этом очистку осуществляют в три этапа, на первом и третьем этапах осуществляют струйную промывку поверхности нагретой водой или смесью воды с водяным паром при давлении струи 20-150 бар, а на втором этапе осуществляют струйную обработку поверхности 0,25-1,5% водным раствором кислотного моющего средства, нагретым до температуры 20-60°C с давлением струи 20-150 бар с выдержкой в течение 10-30 минут. В способе используют моющее средство, содержащее компоненты при следующем соотношении, мас.%: ортофосфорная кислота 20,0-25,0, азотная кислота 8,0-15,0, оксиэтилидендифосфоновая кислота 2,0-4,5, неионогенное поверхностно-активное вещество 0,05-0,11, вода до 100. На первом и третьем этапах проводят струйную промывку поверхности водой, нагретой до температуры 20-100°C, или смесью воды с водяным паром, нагретой до температуры 100-155°C. Изобретение позволяет повысить эффективность очистки проблемных наружных поверхностей теплообменников, в частности поверхностей, расположенных между ребрами теплообменников, особенно для АВО с высоким коэффициентом оребрения труб и 4-, 6- и 8-рядными по расположению теплообменных труб. 2 з.п. ф-лы, 6 пр.

Формула изобретения RU 2 520 839 C1

1. Способ очистки наружной поверхности из алюминия и алюминиевых сплавов аппаратов воздушного охлаждения, включающий обработку поверхности моющим средством и промывку водой, отличающийся тем, что очистку осуществляют в три этапа, при этом на первом и третьем этапах осуществляют струйную промывку поверхности нагретой водой или смесью воды с водяным паром при давлении струи 20-150 бар, а на втором этапе осуществляют струйную обработку поверхности 0,25-1,5% водным раствором кислотного моющего средства, нагретым до температуры 20-60°C с давлением струи 20-150 бар с выдержкой в течение 10-30 минут, при следующем соотношении компонентов моющего средства, мас.%: ортофосфорная кислота 20,0-25,0, азотная кислота 8,0-15,0, оксиэтилидендифосфоновая кислота 2,0-4,5, неионогенное поверхностно-активное вещество 0,05-0,11, вода до 100.

2. Способ по п.1, отличающийся тем, что на первом и третьем этапах проводят струйную промывку поверхности водой, нагретой до температуры 20-100°C.

3. Способ по п.1, отличающийся тем, что на первом и третьем этапах проводят струйную промывку поверхности смесью воды с водяным паром, нагретой до температуры 100-155°C.

Документы, цитированные в отчете о поиске Патент 2014 года RU2520839C1

ЧИСТЯЩИЙ СОСТАВ И СПОСОБ ОЧИСТКИ ФОРМОВАННЫХ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ 2004
  • Хэтч Эндрю М.
  • Рокфорт Гари Л.
  • Банашак Ричард Д.
RU2359070C2
СРЕДСТВО ДЛЯ ОЧИСТКИ ПОВЕРХНОСТИ 2001
  • Бурыгин О.П.
  • Шишанов Н.Ф.
  • Кузина Ж.И.
  • Маневич Б.В.
RU2226209C2
СПОСОБ ОЧИСТКИ ТВЕРДЫХ ПОВЕРХНОСТЕЙ ОТ ЗАГРЯЗНЕНИЙ 2006
  • Акулич Ирина Михайловна
RU2361685C2
СПОСОБ ОЧИСТКИ ТВЕРДОЙ ПОВЕРХНОСТИ И МОЮЩАЯ КОМПОЗИЦИЯ, ПРЕДНАЗНАЧЕННАЯ ДЛЯ ИСПОЛЬЗОВАНИЯ В СПОСОБЕ 2000
  • Сергиенко Ю.В.
  • Трухин О.Н.
  • Копачев А.В.
  • Зачиняев Я.В.
  • Соков Леонид Чемгарович
  • Сокова Олена Юрьевна
RU2170630C1
СПОСОБ ОЧИСТКИ ТЕПЛООБМЕННЫХ ТРУБ АППАРАТОВ ВОЗДУШНОГО ОХЛАЖДЕНИЯ КОМПРЕССОРНЫХ СТАНЦИЙ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ 2005
  • Кудакаев Салих Миневалиевич
  • Мукминов Александр Рашитович
  • Аминев Фарит Миннулович
  • Аскаров Роберт Марагимович
  • Гаррис Нина Александровна
  • Исмагилов Ильдар Галеевич
  • Габдрахманов Альберт Абузарович
  • Файзуллин Саяфетдин Минигулович
RU2302912C2
СОСТАВ ДЛЯ ОБРАБОТКИ МЕТАЛЛИЧЕСКОЙ ПОВЕРХНОСТИ 2002
  • Алмазова Э.А.
  • Фреймарк М.В.
RU2205895C1
CN 102234809 A, 09.11.2011

RU 2 520 839 C1

Авторы

Басаков Евгений Иванович

Даты

2014-06-27Публикация

2012-11-20Подача