Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины.
Известны способы измерения многофазного расхода или многокомпонентных веществ (см., например, П.П. Кремлевский. Расходомеры и счетчики количества вещества. СПб. Политехника. 2002. Книга 2, с.245) с помощью нескольких последовательно установленных расходомеров, обладающих селективными свойствами (кориолисова, объемного и теплового), и вычислительного устройства, определяющего на основе показаний приборов расходы отдельных компонентов.
Недостатками известных решений являются суммарная большая погрешность измерения расхода, а также наличие разнообразных приборов и большие габариты устройства.
Известен способ измерения расхода многофазного потока (RU 2428662 С2, 10.09.2011). Предложенный расходомер содержит блок измерения скорости газожидкостного двухфазного трехкомпонентного потока, блок измерения плотности данного потока и блок вычисления скорости потока каждой фазы, при этом блок измерения плотности содержит блок извлечения смешанной жидкости, причем блок извлечения смешанной жидкости содержит генератор разности давлений, установленный в трубопроводе, через который проходит трехкомпонентный поток, пару соединительных труб, соединенных с расположенными выше по потоку и ниже по потоку сторонами генератора разности давлений. Резервуар для извлечения газа-жидкости служит в качестве места, где принудительно перемешивается посредством изменения давления между входной и выходной сторонами сопла (генератора разности давлений). То есть часть отбираемого трехфазного потока принудительно встряхивается горизонтально, вертикально и т.д. для перемешивания. При этом пузырьки, содержащиеся в смешанной жидкости, вырастают в более крупные пузырьки в результате столкновения друг с другом и отделяются от смешанной жидкости в газовую фазу. Вследствие принудительного перемешивания, даже в случае маленьких пузырьков, пузырьки отделяются от смешанной жидкости в газовую фазу. Далее смешанную жидкость, из которой были отделены пузырьки, накапливают в резервуаре для хранения жидкости посредством регулирования вентиля регулировки скорости потока жидкости. Смешанную жидкость, накопленную в резервуаре для хранения жидкости, используют для измерения плотности. Измерение плотности проводят на смешанной жидкости, из которой были удалены пузырьки, и, следовательно, можно получить измеряемую величину высокой точности.
Недостатками известного способа является большое число механических операций при определении плотности потока, отбирается часть потока для анализа, понижающих достоверность измерения всего потока, большие габариты устройства при выстаивании для отделения фаз.
Известен способ определения параметров потока многофазной смеси жидкости и газа (RU 2386930 С2, 27.06.2009). В измерительный гидроканал помещают датчики, имеющие различные зависимости показаний от расходов компонентов потока. Для получения зависимостей показаний датчиков от измеряемых параметров потока во время калибровки производят запись показаний датчиков при различных комбинациях расходов жидкости и газа и осуществляют последовательную интерполяцию. Для определения расходов двух взаимно нерастворимых жидкостей и газа потока трехкомпонентной смеси используют три датчика, зависимость показаний которых от расходов жидкостей и газа разная. Для определения расходов двух взаимно нерастворимых жидкостей, расхода газа и вязкости потока трехкомпонентной смеси используют четыре датчика, зависимость показаний которых от расходов жидкостей, газа и вязкости разная. В частном случае однотипные датчики располагают в последовательно соединенных отрезках измерительного гидроканала разного диаметра.
Недостатком известного способа является определение параметров по тарировочным данным, предварительно полученным на стендах. Реальные показания могут значительно отличаться от полученных в лабораторных условиях из-за отличия показаний по давлению в трубе, температуре, различных сочетаний и соотношения фаз потока, что ухудшает точность измерения скоростей фаз, их скольжения относительно друг друга и др.
К предлагаемому способу наиболее близким, принятым за прототип, является способ измерения массового расхода газообразных и жидких сред (RU 2279640 С1, 10.07.2006).
По известному способу имеется два измерительных участка: первый - объемный расходомер с датчиком частоты вращения измерителя и второй - датчик перепада давления на сужающем устройстве.
Недостатками известного способа в реализованном устройстве является взаимное расположение по потоку измерителя объемного расхода и далее сужающего устройства, вносит дополнительную погрешность при измерении из-за возможного расширения газообразной среды после сужающего устройства, увеличение ее объема и искажение показаний датчика перепада давления; требуются дополнительные участки трубопровода до и после сужающего устройства для получения достоверных результатов измерения перепада давления; сужающее устройство используется только для получения параметра плотности среды, поскольку общий расход среды измеряется объемным расходомером; дополнительное оборудование в виде сужающего устройства требует дополнительной тарировки межповерочного интервала, наличие дополнительных вычислительных операций при определении массового расхода.
Техническим результатом предлагаемого изобретения является упрощение способа измерения расхода газожидкостной смеси при ограниченном приборном составе устройств измерения, т.е. сокращение измерительных операций, требующих одновременности для более достоверного измерения массового расхода смеси, а также измерение параметров потока в одном приборном месте.
Технический результат достигается тем, что предлагается способ измерения расхода газожидкостной смеси, включающий измерение объемного расхода по частоте вращения ротора при нулевом перепаде давления и передачу данных вычислителю, отличающийся тем, что поддерживают частоту вращения ротора при нулевом перепаде давления на нем, измеряют величины крутящего момента ротора и его частоты вращения, определяют плотность смеси по крутящему моменту ротора, приравнивают ее одному из двух уравнений, связывающих плотность, вязкость и покомпонентные доли трехкомпонентной смеси для формирования ее доли сопротивления в крутящем моменте ротора, далее выделяют вязкость для двухфазной смеси и сравнивают ее с другим из двух уравнений, корректируют величину плотности смеси в трехкомпонентной смеси через крутящий момент ротора, формируют его доли по плотности и вязкости смеси, извлекают вычислителем из полученных независимых уравнений массовые и объемные составляющие трехкомпонентной смеси и массового расхода смеси.
Предлагается способ измерения расхода газожидкостной смеси, в котором объемный расход Qсм измеряется при нулевом перепаде давления, и для такого режима вычислителем поддерживается требуемый крутящий момент на приводе ротора и далее по заданному алгоритму массовый расход определяется вычислителем.
Для реализации способа организуют измерительный участок, на котором проводят измерения объемного расхода с использованием замкнутого контура регулирования по нулевому перепаду давления на измерительном участке (вращающемся измерителе) с помощью привода, выполненного в электромеханическом или пневмогидравлическом вариантах.
На чертеже представлена схема устройства, реализующего предлагаемый способ.
Вращающийся ротор 1 объемного расходомера приводится во вращение приводом 2, частота вращения которого измеряется датчиком 3. Объемный расход смеси Qсм поступает на вход измерительного участка 4 и проходит через вращающийся ротор 1 на выход 5. Частота вращения n ротора 1 поддерживается контуром регулирования при ∆P≈0, состоящим из датчика 6 перепада давления, вычислителя 7 и привода 2.
Способ реализуется по следующему алгоритму в условиях:
- перепад давления на роторе (измерительном устройстве) поддерживается равным нулю,
- температура и давление измеряется соответствующими датчиками (на чертеже не показаны) для измеряемого расхода в данном месте, в данное время и передаются вычислителю.
Объемный расход Qсм ГЖС расходомера определяется частотой вращения n ротора 1 (датчик 3)
Крутящий момент Mсм привода 2 ротора 1 для преодоления сил сопротивления равен сумме моментов сопротивления смеси по плотности Мρ и вязкости Мµ (индекс «см» -смесь).
Другие внешние силы сопротивления принимаем малыми и не учитываем.
При вращении ротора с частотой n и величине перепада давления ∆P≈0 на измерительном участке 4, включая ротор 1, величина гидравлического сопротивления может быть выражена по плотности
по вязкости
k4, k5 - постоянные размерные коэффициенты.
Величины n, Mсм измеряются датчиками 3 и 8 при ∆P≈0.
µсм - коэффициент динамической вязкости смеси, ρсм - величина плотности смеси, Gсм - величина массового расхода смеси, S - поверхность расходомера, участвующая в сопротивлении по вязкости.
Плотность смеси ρсм из выражения (3) равна ρсм=Mρ/k3n2. Можно принять для некоторых режимов по расходу Qсм смеси, что
Известно выражение плотности смеси через покомпонентные составляющие массового и объемного расхода смеси
и единства массы смеси
при αн=Qн/Qсм, αв=Qв/Qсм, αг=Qг/Qсм, а также
A=[(Qн/νн+Qв/νв+Qг/νг)].
Индексы, обозначающие н - нефть, в - вода, г - газ, относятся к плотности, вязкости и покомпонентным массовым и объемным долям смеси Gн, Gв, Gг и Qн, Qв, Qг.
Считаем, что величины плотности ρн, ρв, ρг и вязкости µн, µв, µг компонентов смеси известны и для конкретной буровой скважины нефти постоянны.
Приравняем (5) и (6), получим
Выражение (9) содержит объемные покомпонентные составляющие Qн, Qв, Qг.
Перепишем (2), имеем
С другой стороны, крутящий момент ротора Mсм можно выразить с помощью уравнений, связывающих плотность ρсм и вязкость µсм смеси двухфазной ГЖС (газ-жидкость), исходя из положения, что такие параметры, как плотность и вязкость пластовой минерализованной воды, а также нефти и эмульсии колеблются в пределах 5-10%. В этом случае можно принять компонент нефть за основную составляющую в преодолении сил сопротивления по вязкости при вращении ротора. Плотность ρсм смеси, которая ранее (5) подсчитывалась через Mсм, корректируется параметрами трехкомпонентной смеси ГЖС при дальнейшем совместном решении объединенной покомпонентной системы уравнений (7), (9) и (14).
Из (Физико-химические свойства нефти, газа, воды и их смесей, www.allbest.ru) имеем для двухфазной смеси жидкости (нефть и вода) и газа соотношение кинематических вязкостей
β=Qг/(Qг+Qн) - расходное объемное газосодержание двухфазного потока при средних значениях по давлению и температуре в трубопроводе, преобразуем (14)
В=[(Qгνн+Qнνг)/νгνн(Qг+Qн)].
Подставим (12) в (10), тогда
Приравняем (13) и (8), получим
Mсм/n (k3nВ+k5)=1/А или, подставляя выражения А и В, получим
При наличии известных величин плотности и кинематической и динамической вязкости компонентов смеси (считая их const для исследуемой буровой), а также измеренной величины Qсм далее из трех независимых уравнений (7), (9) и (14) извлекаются массовые и объемные покомпонентные составляющие ГЖС - Gн. Gв, Gг и Qн, Qв, Qг.
Далее определяем ρсм и Gсм по ф. (6).
Измерение массового и объемного расхода ГЖС предлагаемым способом имеет следующие преимущества:
- отсутствие квадратичной зависимости «расход - перепад давлений»,
- значительное расширение диапазона измерений с сохранением текущей погрешности,
- отсутствие протечек при нулевом перепаде на роторе позволяет измерять объемный расход с максимальной точностью,
- среда не подвергается сжатию и расширению, проходя через измерительный участок при измерении объемного и массового расхода,
- сведение к минимуму влияния плотности и вязкости среды на измерение расходов ГЖС,
- фактически диапазон измерения зависит от технических возможностей измерителя и привода (электродвигателя) с большим диапазоном изменения частоты вращения,
- упрощение способа измерения массового расхода при ограниченном приборном составе устройства измерения, т.е. сокращение измерительных и вычислительных операций, требующих одновременности для более достоверного измерения массового расхода среды,
- одновременное измерение двух параметров в одном приборном месте для вычисления массового расхода, а также покомпонентных массовых и объемных составляющих газожидкостной смеси.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ ПОКОМПОНЕНТНОГО РАСХОДА ГАЗОЖИДКОСТНОЙ СМЕСИ | 2013 |
|
RU2521721C1 |
УСТРОЙСТВО ИЗМЕРЕНИЯ РАСХОДА ГАЗОЖИДКОСТНОЙ СМЕСИ | 2009 |
|
RU2396519C1 |
УСТРОЙСТВО ПОКОМПОНЕНТНОГО ИЗМЕРЕНИЯ РАСХОДА СЫРОГО ГАЗА | 2010 |
|
RU2435142C1 |
СПОСОБ ВЫНОСА ЖИДКОСТИ С ЗАБОЯ СКВАЖИНЫ ГАЗОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2148705C1 |
Многофазный расходомер для покомпонентного определения расходов газа, углеводородного конденсата и воды в продуктах добычи газоконденсатных скважин | 2020 |
|
RU2746167C1 |
МАССОВЫЙ РАСХОДОМЕР ГАЗОЖИДКОСТНОГО ПОТОКА | 2000 |
|
RU2178871C1 |
АДАПТИВНЫЙ СПОСОБ ИЗМЕРЕНИЯ ДЕБИТА ПРОДУКЦИИ ГАЗОКОНДЕНСАТНЫХ СКВАЖИН | 2014 |
|
RU2596611C2 |
Способ определения покомпонентного расхода газожидкостной среды | 2019 |
|
RU2726304C1 |
СПОСОБ ТРУБОПРОВОДНОГО ТРАНСПОРТА МНОГОФАЗНОЙ МНОГОКОМПОНЕНТНОЙ СМЕСИ | 2012 |
|
RU2503878C1 |
СПОСОБ ИЗМЕРЕНИЯ ПОКОМПОНЕНТНОГО РАСХОДА ТРЕХКОМПОНЕНТНОГО ГАЗОЖИДКОСТНОГО ПОТОКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2301887C2 |
Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения расхода газожидкостной смеси включает измерение объемного расхода по частоте вращения ротора при нулевом перепаде давления и передачу данных вычислителю. При этом поддерживают частоту вращения ротора при нулевом перепаде давления на нем, измеряют величины крутящего момента ротора и его частоты вращения, определяют плотность смеси по крутящему моменту ротора, приравнивают ее к одному из двух уравнений, связывающих плотность, вязкость и покомпонентные доли трехкомпонентной смеси для формирования ее доли сопротивления в крутящем моменте ротора. Далее выделяют вязкость для двухфазной смеси и сравнивают ее с другим из двух уравнений, корректируют величину плотности смеси в трехкомпонентной смеси через крутящий момент ротора, формируют его доли по плотности и вязкости смеси, извлекают вычислителем из полученных независимых уравнений массовые и объемные составляющие трехкомпонентной смеси и массового расхода смеси. Технический результат - упрощение способа измерения расхода газожидкостной смеси при ограниченном приборном составе устройств измерения, т.е. сокращение измерительных операций, требующих одновременности для более достоверного измерения массового расхода среды, а также измерение параметров потока в одном приборном месте. 1 ил.
Способ измерения расхода газожидкостной смеси, включающий измерение объемного расхода по частоте вращения ротора при нулевом перепаде давления и передачу данных вычислителю, отличающийся тем, что поддерживают частоту вращения ротора при нулевом перепаде давления на нем, измеряют величины крутящего момента ротора и его частоты вращения, определяют плотность смеси по крутящему моменту ротора, приравнивают ее к одному из двух уравнений, связывающих плотность, вязкость и покомпонентные доли трехкомпонентной смеси для формирования ее доли сопротивления в крутящем моменте ротора, далее выделяют вязкость для двухфазной смеси и сравнивают ее с другим из двух уравнений, корректируют величину плотности смеси в трехкомпонентной смеси через крутящий момент ротора, формируют его доли по плотности и вязкости смеси, извлекают вычислителем из полученных независимых уравнений массовые и объемные составляющие трехкомпонентной смеси и массового расхода смеси.
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2004 |
|
RU2279640C2 |
Массовый расходомер | 1989 |
|
SU1682791A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МАССОВОГО РАСХОДА ГАЗОЖИДКОСТНОЙ СМЕСИ | 2006 |
|
RU2319003C1 |
Перекатываемый затвор для водоемов | 1922 |
|
SU2001A1 |
Авторы
Даты
2014-06-27—Публикация
2013-01-31—Подача