Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др.
Известны радиоволновые способы измерения, которые используют для бесконтактного измерения уровня жидких сред в емкостях для хранения нефтепродуктов, химически активных, агрессивных и вязких жидкостей (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.). При этом реализуемые на основе этих способов уровнемеры должны обеспечивать достаточно высокую одинаковую точность (до 2 мм) в диапазоне измерения от 0,5 до 20 м и при этом быть надежными, удобными в эксплуатации и недорогими устройствами. В задачах, связанных с радиоволновым бесконтактным измерением уровня жидкостей, применяются способы с частотной модуляцией электромагнитных колебаний.
Реализацию способа рассмотрим на примере бесконтактного радиоволнового уровнемера, использующего в работе линейную частотную модуляцию несущей волны (ЛЧМ). Эти частотно-модулированные электромагнитные волны излучаются в сторону поверхности жидкости по нормали к ней. Временное запаздывание отраженной от контролируемой поверхности волны относительно падающей приводит к сдвигу частоты между излученными и отраженными волнами. Эта разностная частота или сигнал биений выделяется на специальном элементе - смесителе, входящем в состав измерительного устройства. В этом случае частота отраженного от поверхности контролируемой среды сигнала отличается от частоты зондирующего сигнала на величину разностной частоты: fP=2FMΔfML/с, где L - расстояние до поверхности контролируемой среды, ΔfM - максимальная девиация частоты, FM=1/TM - частота модуляции, TM - период модуляции, c - скорость света. Из этой формулы следует:
Как и у всех частотных дальномеров, здесь имеется методическая дискретная ошибка определения дальности, обусловленная периодичностью модуляции зондирующего сигнала или дискретным характером его спектра:
Наличие этой ошибки определяется способом измерения частоты, который основан на подсчете числа нулей N сигнала за определенное время. Так как при незначительном изменении расстояния меняется фаза, а следовательно, и форма сигнала на выходе смесителя, то результат подсчета N меняется дискретно. В связи с этим используются различные технические решения, направленные на уменьшение этой погрешности (Кагаленко Б.И., Марфин В.П., Мещеряков В.П. Дальномер повышенной точности // Измерительная техника.1981. №12. С.68-69.).
Известно также техническое решение - измерение расстояния по максимальному или средневзвешенному значению спектра разностной частоты сигнала биений в методе с использованием частотной модуляции, которое по технической сущности наиболее близко к предлагаемому способу и принятое в качестве прототипа (Теоретические основы радиолокации /Под ред. Я.Д.Ширмана. - М.: Сов. Радио, 1970. 560 с.). Данный способ-прототип заключается в зондировании поверхности жидкости по нормали к ней частотно-модулированными электромагнитными волнами, приеме отраженных электромагнитных волн, выделении сигнала биений на выходе смесителя между падающими и отраженными электромагнитными волнами и вычислении расстояния по разностной частоте сигнала биений, определяемой по максимальному значению его частотного спектра.
Однако спектральный подход к анализу сигнала биений имеет существенный недостаток, не позволяющий получить достаточную точность. При спектральном Фурье-анализе сигнал представляется в виде суммы гармоник согласно формуле:
а коэффициенты Cn вычисляются по формулам:
где n=0; ±1; ±2…,
Отдельные особенности сигнала биений, например разрывы или смены фазы, происходящие с периодичностью периода модуляции TM, «размазываются» по всей частотной оси, вызывая изменения частотного образа сигнала во всем интервале частот от -∞ до +∞. Резкое увеличение числа гармоник в этом случае оказывает влияние на форму сигнала, поэтому точно определить разностную частоту по спектру сигнала биений невозможно. Сказанное демонстрируется на Фиг.1,а, б. Здесь представлен сигнал биений с разностной частотой 10 Гц и периодом модуляции TM=1 с (см. Фиг.1,а) и его спектр (см. Фиг.1,б), полученный после обработки 1000 выборок сигнала за период TM. Из чертежа видно, что частота максимума спектральной плотности сигнала fmax=7,812 Гц, при истинном значении 10 Гц. Использование оконного преобразования Фурье также не может в полной мере устранить ошибку в определении разностной частоты по спектру сигнала биений, поскольку это не избавляет от принципиального недостатка - использования синусоиды в качестве базисной функции спектрального разложения для анализа локализованного во времени сигнала, каким является сигнал биений (Езерский В.В., Давыдочкин В.М. Оптимизация спектральной обработки сигнала прецизионного датчика расстояния на основе частотного дальномера // Измерительная техника. 2005. №2. С.21-25.).
Техническим результатом настоящего изобретения является повышение точности измерения.
Технический результат в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны затем выделяют сигнал биений на выходе смесителя между падающими и отраженными электромагнитными волнами, производят прямое непрерывное вейвлет-преобразование (ПНВП) сигнала биений за время периода модуляции, в полученном вейвлет-спектре сигнала биений находят точки локальных экстремумов, экстраполируют их прямой линией, находят точку пересечения этой линии с осью ординат масштабных коэффициентов - a, по этому коэффициенту с помощью функции преобразования, построенной для используемого вейвлета, определяют разностную частоту, по которой судят об уровне жидкости в емкости.
Предлагаемый способ поясняется чертежом на фиг.2, где приведена структурная схема устройства для реализации способа.
На фиг.2 показаны модулятор 1, генератор 2, направленный ответвитель 3, передающая антенна 4, приемная антенна 5, смеситель 6, вычислительное устройство 7.
Способ реализуется следующим образом. Генератор линейно-изменяющегося напряжения 1 модулирует частоту генератора СВЧ 2, с выхода которого электромагнитные колебания проходят через направленный ответвитель 3 на антенну 4 и излучается в сторону контролируемой поверхности 8. Отраженная электромагнитная волна принимается антенной 5 и поступает на смеситель 6, куда также поступает часть мощности падающей волны от направленного ответвителя 3. На выходе смесителя 6 формируется сигнал биений, который поступает в вычислительное устройство 7, где происходит определение разностной частоты сигнала с помощью процедуры ПНВП. Затем по этой частоте определяют расстояние L до контролируемой поверхности 8, по которому судят об уровне жидкости в емкости.
ПНВП сигнала U(t) задается по аналогии с преобразованием Фурье путем вычисления вейвлет-коэффициентов по формуле:
где U(t) - сигнал биений, ψ(t) - одна из материнских вейвлет-функций, a - масштабирующий временной коэффициент, b - коэффициент сдвига по времени. Вейвлет-функции или вейвлеты в отличие от синусоиды локализованы как в частотной, так и во временной области. Они, как правило, не имеют аналитического представления в виде одной формулы и задаются итерационными выражениями. На фиг.3 представлены некоторые вейвлеты и их центральные частоты Fc.: а) Добеши 2-го порядка; б) «Мексиканская шляпа»; в) Симлета 4-го порядка; г) Морлета. Результат вычисления вейвлет-спектра сигнала биений (см. фиг.1,а), с использованием вейвлета Морлета (см. фиг.3,г), показан на фиг.4,а. Здесь по оси ординат отложены масштабные коэффициенты a, а по оси абсцисс - временной коэффициент b, коэффициенты C(a, b) представлены в виде эквипотенциальных линий. На фиг.4,б нарисована зависимость частоты f от коэффициента a, которая вычисляется при заданных значениях времени выборки Δ=10-3 с, согласно формуле f=Fc/aΔ, где Fc=0,8125 Гц - центральная частота соответствующего вейвлета, в данном случае - Морлета. Для определения разностной частоты сигнала биений через экстремумы вейвлет-спектра строится прямая до пересечения с осью ординат и в точке пересечения определяют величину a= a 0=81, а по этому значению с помощью фиг.4,б вычисляют разностную частоту fp=10 Гц. Отсюда видно, что с помощью вейвлет-спектра сигнала биений можно точно вычислить разностную частоту, в отличие от определения по Фурье-спектру.
Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. Способ заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал биений на выходе смесителя между падающими и отраженными электромагнитными волнами, производят прямое непрерывное вейвлет-преобразование сигнала биений за время периода модуляции, в полученном вейвлет-спектре сигнала биений находят точки локальных экстремумов, экстраполируют их прямой линией, находят точку пересечения этой линии с осью ординат масштабных коэффициентов - a, по полученному коэффициенту с помощью функции преобразования, построенной для используемого вейвлета, определяют разностную частоту, по которой судят об уровне жидкости в емкости. Технический результат - повышение точности измерения уровня жидкости в емкостях. 4 ил.
Бесконтактный радиоволновый способ измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал биений на выходе смесителя между падающими и отраженными электромагнитными волнами, отличающийся тем, что производят прямое непрерывное вейвлет-преобразование сигнала биений за время периода модуляции, в полученном вейвлет-спектре сигнала биений находят точки локальных экстремумов, экстраполируют их прямой линией, находят точку пересечения этой линии с осью ординат масштабных коэффициентов - a, по полученному коэффициенту с помощью функции преобразования, построенной для используемого вейвлета, определяют разностную частоту, по которой судят об уровне жидкости в емкости.
Теоретические основы радиолокации / Под ред | |||
Я.Д.Ширмана | |||
- М.: Сов | |||
Радио, 1970 | |||
СКЛАДНАЯ НИВЕЛЛИРОВОЧНАЯ РЕЙКА | 1923 |
|
SU560A1 |
СПОСОБ ИССЛЕДОВАНИЯ ВАРИАБЕЛЬНОСТИ СЕРДЕЧНОГО РИТМА ЧЕЛОВЕКА | 2007 |
|
RU2326587C1 |
СПОСОБ ГИДРОМЕТЕОРОЛОГОАКУСТИЧЕСКОГО НАБЛЮДЕНИЯ ЗА АКВАТОРИЕЙ МОРСКОГО ПОЛИГОНА | 2005 |
|
RU2304794C2 |
US 7819003 B2, 26.10.2010 | |||
US 6615149 B1, 02.09.2003 |
Авторы
Даты
2014-07-10—Публикация
2012-12-07—Подача