БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ Российский патент 2017 года по МПК G01F23/284 

Описание патента на изобретение RU2611333C1

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др.

Известны радиоволновые способы измерения, которые используют для бесконтактного измерения уровня жидких сред в емкостях для хранения нефтепродуктов, химически активных, агрессивных и вязких жидкостей (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. - М.: Энергоатомиздат, 1989. 208 с.). При этом реализуемые на основе этих способов уровнемеры должны обеспечивать достаточно высокую одинаковую точность (до 2 мм) в диапазоне измерения от 0,3 до 20 метров и при этом быть надежными, удобными в эксплуатации и недорогими устройствами. В задачах, связанных с радиоволновым бесконтактным измерением уровня жидкостей, применяются способы с частотной модуляцией электромагнитных колебаний.

Реализацию способа рассмотрим на примере бесконтактного радиоволнового уровнемера, использующего в работе линейную частотную модуляцию несущей волны (ЛЧМ). Эти частотно-модулированные электромагнитные волны излучаются в сторону поверхности жидкости по нормали к ней. Временное запаздывание отраженной от контролируемой поверхности волны относительно падающей приводит к сдвигу частоты между излученными и отраженными волнами. Этот сигнал разностной частоты (СРЧ) или сигнал биений выделяется на специальном элементе - смесителе, входящем в состав измерительного устройства. В этом случае частота отраженного от поверхности контролируемой среды сигнала отличается от частоты зондирующего сигнала на величину частоты сигнала биений: , где L - расстояние до поверхности контролируемой среды или уровень, - максимальный диапазон перестройки частоты, ТM - период линейной модуляции, с - скорость света. Из этой формулы следует

Как и у всех частотных дальномеров, здесь имеется методическая дискретная ошибка определения дальности δ, обусловленная конечным числом периодов сигнала биений за время периода модуляции, которое может отличаться от целого:

Наличие этой ошибки определяется способом измерения частоты, который основан на подсчете числа нулей сигнала за определенное время. Так как при незначительном изменении расстояния меняется фаза, а следовательно, и форма сигнала на выходе смесителя, то результат подсчета меняется дискретно. В связи с этим используются различные технические решения, направленные на уменьшение этой погрешности (Кагаленко Б.И., Марфин В.П., Мещеряков В.П. Дальномер повышенной точности // Измерительная техника.1981. №12. С. 68-69.).

Известно также техническое решение - измерение расстояния по максимальному или средневзвешенному значению спектра сигнала биений в методе с использованием частотной модуляции, которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа (Теоретические основы радиолокации / Под ред. Я.Д. Ширмана. - М.: Сов. Радио, 1970. 560 с.). Данный способ-прототип заключается в зондировании поверхности жидкости по нормали к ней частотно-модулированными электромагнитными волнами, приеме отраженных электромагнитных волн, выделении сигнала биений на выходе смесителя между падающими и отраженными электромагнитными волнами и вычислении расстояния по разностной частоте сигнала СРЧ, определяемой по максимальному значению его частотного спектра.

Однако при этом методическая дискретная ошибка (2) сохраняется, поскольку спектральный анализ основан на разложении сигнала по целому числу гармоник, в то время как реальный максимум при измерении расстояния может располагаться и между гармониками. Чтобы измерить частоту СРЧ на минимальном расстоянии 0.3 м, надо иметь такую , чтобы можно было наблюдать хотя бы один период сигнала СРЧ. Тогда это будет первая гармоника в спектре СРЧ. Из формулы (1) следует, что в этом случае равна 500 МГц, а ошибка δ равна 0,15 м при диапазоне измерения свыше 0,3 м. Поэтому, чтобы обеспечить приемлемую точность, приходится увеличивать ; обычно эта величина для промышленных уровнемеров составляет 1÷2 ГГц, что соответствует δ=7,5÷3,75 см. Дальнейшее увеличение точности достигается путем использования сглаживающих процедур (Езерский В.В., Давыдочкин В.М. Оптимизация спектральной обработки сигнала прецизионного датчика расстояния на основе частотного дальномера // Измерительная техника. 2005. №2. С. 21-25.). Однако использование больших значений приводит к увеличению дополнительных погрешностей из-за возрастающего влияния нелинейности частотной характеристики СВЧ-блоков схемы измерителя, которое приводит к расширению спектра сигнала биений, и, соответственно, к большей ошибке в определения максимума спектральной плотности. Все это вместе с высокой стоимостью широкополосного устройства с высокой равномерностью частотной характеристики приводит к снижению функциональных параметров уровнемера.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, записывают эти данные в виде массива выборок с частотой fs за время периода модуляции, определяют уровень по частоте максимума спектральной плотности сигнала разностной частоты. При этом дополнительно массив данных сигнала разностной частоты записывается с частотой fsi, меняющейся пропорционально отклонению от линейной частотной характеристики измерительной системы, а затем вновь выбирается равномерно для спектральной обработки.

Предлагаемый способ поясняется чертежами, где на фиг. 1 приведена структурная схема устройства для реализации способа и его частотная характеристика, а на фиг. 2 - временные диаграммы, поясняющие действие способа.

На фиг. 1 показан модулятор 1, генератор 2, направленный ответвитель 3, передающая антенна 4, приемная антенна 5, смеситель 6, блок предварительной обработки сигнала -7, вычислительный блок 8.

Способ реализуется следующим образом. Генератор линейно-изменяющегося напряжения 1 модулирует частоту генератора СВЧ 2, с выхода которого электромагнитные колебания проходят через направленный ответвитель 3 на антенну 4 и излучаются в сторону контролируемой поверхности 9. Отраженная электромагнитная волна принимается антенной 5 и поступает на смеситель 6, куда также поступает часть мощности падающей волны от направленного ответвителя 3. На выходе смесителя 6 формируется сигнал разностной частоты, который поступает в блок предварительной обработки сигнала - 7. В этом блоке производится запись данных в массив за время периода частотной модуляции с частотой выборки, меняющейся пропорционально отклонению частотной характеристики измерительной системы от линейной, затем данные с одинаковой частотой выборки подаются на вычислительный блок 8, где уровень определяется по частоте максимума спектральной плотности линеаризированного сигнала разностной частоты.

На фиг. 1,б представлена идеальная линейная частотная характеристика датчика - 1 и реальная, нелинейная - 2. Обе кривые нарисованы на графике в относительных единицах , где - частота, ΔF - максимальная девиация, и t/ТM, где t - время, ТM - период модуляции. Формула определения уровня (1) справедлива в случае идеальной характеристики датчика - 1 на фиг. 2,а. Присутствие нелинейности приводит к соответствующим локальным изменениям частоты СРЧ. В результате его спектр расплывается, что увеличивает ошибку при определении максимума спектральной плотности и, следовательно, уровня. Однако если, в соответствии с отклонениями частотной характеристики от линейной, менять частоту выборки при записи массива данных, а затем на выходе обратно считать данные в равномерном временном масштабе, можно получить идеально линейную частотную характеристику измерительной системы.

Рассмотрим процедуру калибровки с целью определения необходимых локальных частот выборок для линеаризации на следующем примере. Для численного моделирования введем следующие исходные данные для нелинейной частотной характеристике датчика соответствующей кривой 2 на фиг. 2,а. ТM=1 с, ΔF=1 ГГц, N(число локальных областей)=11, Δt=0,1 с, L=10 м, количество выборок - 1100, по 100 на каждый участок Δt. Частота биений при этих данных согласно формуле (1) равна 66,66 Гц. Локальные частоты определим с помощью прямого непрерывного вейвлет-преобразования (ПНВП). Вычислим для модельного сигнала биений U(t) по формуле (2) коэффициенты ПНВП:

где а - частотный масштабирующий коэффициент, b - коэффициент временного масштаба, ψ - вейвлетная функция, в нашем примере это комплексный вейвлет Гаусса 4-го порядка. Результат вычислений представлен на фиг. 2,а. Далее, на каждом временном интервале Δti частота выборок изменяется пропорционально частоте отклонения от линейной зависимости и, следовательно, обратно пропорционально отклонению масштабирующего коэффициента а. Как известно, коэффициенты а связаны с частотой сигнала посредством передаточной функции [5]:

где FC - центральная частота вейвлета, fsi - частота выборки для соответствующего сегмента Δti. Удобнее при этом пересчитать частоту в относительные единицы, как на фиг. 1,б. Это дает возможность линеаризовать частотную характеристику во всем диапазоне ΔF, локально изменяя частоты выборок. Далее вновь полученный массив данных с виртуальной нелинейной шкалой по горизонтальной координате вновь перемасштабируется с равномерным количеством выборок и вновь выполняется ПНВП. В случае линеаризации данных будет наблюдаться картина, представленная на фиг. 2,б. Максимумы энергетической плотности коэффициентов концентрируются на линии а=10,1, - что соответствует частоте биений 66,66 Гц. В результате процедуры линеаризации спектр обработанного таким образом сигнала значительно сужается (см. фиг. 2,в) по сравнению с сигналом без обработки. В дальнейшей работе полученный массив выборок fsi используется для определения уровня во всем рабочем диапазоне измерений.

Таким образом, в результате описанной процедуры обработки входных данных сигнал разностной частоты очищается от искажений, вызванных нелинейностью частотной характеристики, что позволяет повысить точность определения частоты максимума его спектральной плотности, а следовательно, уровня жидкости. Результаты численного моделирования показали возможность использования измерительных систем с частотной нелинейностью до 10-15% без потери в точности по сравнению с идеальной характеристикой. Это обстоятельство, кроме прочего, позволяет использовать более дешевые СВЧ-комплектующие, чем достигается существенный экономический эффект.

Похожие патенты RU2611333C1

название год авторы номер документа
Способ измерения уровня жидкости и сыпучих сред в емкости 2016
  • Хаблов Дмитрий Владиленович
RU2626386C1
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВОЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2012
  • Хаблов Дмитрий Владиленович
RU2521729C1
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2014
  • Хаблов Дмитрий Владиленович
RU2601283C2
СПОСОБ ИЗМЕРЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ЖИДКОСТИ В ЕМКОСТИ 2014
  • Хаблов Дмитрий Владиленович
RU2575767C1
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2017
  • Хаблов Дмитрий Владиленович
RU2650611C1
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ УРОВНЕМЕР 2017
  • Хаблов Дмитрий Владиленович
RU2649665C1
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД 2016
  • Хаблов Дмитрий Владиленович
RU2620774C1
ДОПЛЕРОВСКИЙ СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ 2016
  • Хаблов Дмитрий Владиленович
RU2611601C1
СПОСОБ ФОРМИРОВАНИЯ ЗОНДИРУЮЩЕГО ЧАСТОТНО-МОДУЛИРОВАННОГО СИГНАЛА ДЛЯ ДАЛЬНОМЕРА С ПЕРИОДИЧЕСКОЙ ЧАСТОТНОЙ МОДУЛЯЦИЕЙ 2003
  • Атаянц Б.А.
  • Баранов И.В.
  • Болонин В.А.
  • Давыдочкин В.М.
  • Езерский В.В.
  • Кагаленко Б.В.
  • Пронин В.А.
RU2234716C1
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ЛЬДА И ОПРЕДЕЛЕНИЯ СВОЙСТВ ПОДСТИЛАЮЩЕЙ СРЕДЫ ПОДО ЛЬДОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2014
  • Атаянц Борис Аванесович
  • Баранов Илья Владимирович
  • Болонин Вадим Анатольевич
  • Давыдочкин Вячеслав Михайлович
  • Езерский Виктор Витольдович
RU2550363C1

Иллюстрации к изобретению RU 2 611 333 C1

Реферат патента 2017 года БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат заключается в повышении точности измерений. В предлагаемом способе измерения уровня жидкости в емкости технический результат достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, записывают эти данные в виде массива выборок с частотой за время периода модуляции, определяют уровень по частоте максимума спектральной плотности сигнала разностной частоты. При этом дополнительно массив данных сигнала разностной частоты записывается с частотой , меняющейся пропорционально отклонению от линейной частотной характеристики измерительной системы, а затем вновь выбирается равномерно для спектральной обработки. 2 ил.

Формула изобретения RU 2 611 333 C1

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, записывают эти данные в виде массива выборок с частотой fs за время периода модуляции, определяют уровень по частоте максимума спектральной плотности сигнала разностной частоты, отличающийся тем, что массив данных сигнала разностной частоты записывается с частотой fsi, меняющейся пропорционально отклонению от линейной частотной характеристики измерительной системы, а затем вновь выбирается равномерно для спектральной обработки.

Документы, цитированные в отчете о поиске Патент 2017 года RU2611333C1

СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ МАТЕРИАЛА В РЕЗЕРВУАРЕ 2003
  • Атаянц Б.А.
  • Паршин В.С.
  • Езерский В.В.
RU2244268C2
СПОСОБ ИЗМЕРЕНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ПАРАМЕТРОВ ЗОНДИРУЕМОГО МАТЕРИАЛА И РАССТОЯНИЯ ДО НЕГО (ВАРИАНТЫ), УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И СПОСОБ КАЛИБРОВКИ ЭТОГО УСТРОЙСТВА 2003
  • Атаянц Б.А.
  • Давыдочкин В.М.
  • Езерский В.В.
  • Пронин В.А.
RU2234688C1
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2014
  • Хаблов Дмитрий Владиленович
RU2551260C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2012
  • Совлуков Александр Сергеевич
  • Хаблов Дмитрий Владиленович
RU2504739C1
WO 2008057022 A1, 15.05.2008
US 5546088 A1, 13.08.1996.

RU 2 611 333 C1

Авторы

Хаблов Дмитрий Владиленович

Даты

2017-02-21Публикация

2015-10-12Подача