КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ Российский патент 2014 года по МПК H02H9/02 H03K17/00 H03K17/08 

Описание патента на изобретение RU2523024C1

Изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой от перегрузки по току, преимущественно в системах управления космических аппаратов.

Известен коммутатор напряжения с защитой от перегрузки по току [1], содержащий электронный ключ, первый и второй релейные элементы, датчик тока, триггер, блок нагрузки, операционный усилитель, задатчик напряжения, транзистор.

Недостаток известного устройства состоит в его сложности и в использовании датчика тока (шунта). При коммутации больших токов на шунте выделяется значительная мощность, что приводит к увеличению массы и габаритов коммутатора напряжения за счет установки металлического отводящего тепло от шунта элемента, рассчитанного на отвод тепла большой мощности.

Наиболее близким техническим решением к предлагаемому устройству является коммутатор напряжения с защитой от перегрузки по току, описанный в [2]. Известный коммутатор напряжения содержит последовательно соединенные датчик тока, электронный коммутатор и блок нагрузки, а также релейный элемент, триггер.

Недостаток известного устройства состоит в том, что он использует датчик тока для реализации своей основной функции. При коммутации больших токов в цепях их протекания возникают значительные помехи. Для получения достоверного уровня срабатывания релейного элемента необходимо, чтобы уровень полезного сигнала превышал уровень сигнала помехи. Для этого требуется увеличивать омическое сопротивление датчика тока, а это приводит к значительному увеличению на нем рассеиваемой мощности и, как следствие, к увеличению массы и габаритов. Для достоверного срабатывания релейного элемента, выключающего коммутатор при возникновении тока перегрузки, величина полезного входного сигнала релейного элемента должна быть на уровне 100-300 мВ. Так, при коммутации тока IH=50А и при сопротивлении датчика тока (шунта) rш=4 мОм тепловыделение шунта составит 10 Вт.

Для отвода такого тепла от шунта требуется значительный по массе и габаритам металлический элемент, что увеличивает массу и габариты коммутатора напряжения.

Задача изобретения - снижение массы и габаритов коммутатора напряжения и повышение точности при изменении сопротивления электронного коммутатора в открытом состоянии в зависимости от температуры.

Эта задача достигается тем, что коммутатор напряжения с защитой от перегрузки по току содержит входную шину, первый элемент И, релейный элемент с гистерезисом, инверсный выход которого соединен с первым входом первого элемента И, и последовательно соединенные электронный коммутатор и блок нагрузки, при этом электронный коммутатор выполнен в виде электронного ключа с МОП структурой, а в коммутатор напряжения дополнительно введены второй элемент И, первый электронный ключ, сумматор и последовательно соединенные источник опорного напряжения, второй электронный ключ, резистор и терморезистор, при этом инверсный выход релейного элемента с гистерезисом подключен к первому входу второго элемента И, второй вход которого соединен с входной шиной и вторым входом первого элемента И, выход второго элемента И соединен с входом управления первого и второго электронных ключей, вход релейного элемента с гистерезисом соединен с выходом сумматора, первый вход которого соединен с выходом первого электронного ключа, сигнальный вход которого подключен к общей точке электронного коммутатора и блока нагрузки, второй вход сумматора соединен с общей точкой резистора терморезистора, вход управления электронного коммутатора соединен с выходом первого элемента И.

На фиг.1 приведена блок-схема коммутатора напряжения с защитой от перегрузки по току. На этой схеме: 1 - входная шина, 2 - первый элемент И, 3 - электронный коммутатор, 4 - блок нагрузки, 5 - второй элемент И, 6 - электронный ключ, 7 -релейный элемент с гистерезисом, 8 - резистор, 9 - терморезистор, 10 - источник опорного напряжения, 11 - второй электронный ключ, 12 - сумматор.

Входная шина 1 соединена с вторыми входами первого 2 и второго 5 элементов И, первые входы которых подключены к инверсному выходу релейного элемента с гистерезисом 7. Электронный коммутатор 3 и блок нагрузки 4 соединены последовательно, при этом их общая точка подключена к сигнальному входу электронного ключа 6, выход которого соединен с первым входом сумматора 12. Источник опорного напряжения 10, второй электронный ключ 11, резистор 8 и терморезистор 9 соединены последовательно. Выход сумматора 12 соединен с входом релейного элемента с гистерезисом 7, второй вход сумматора 12 подключен к общей точке резистора 8 и терморезистора 9. Выход первого элемента И 2 соединен с входом управления электронного коммутатора 3, выход второго элемента 5 соединен с входами управления первого 6 и второго 11 электронных ключей.

Коммутатор напряжения с защитой от перегрузки по току работает следующим образом. В качестве электронного коммутатора 3 предполагается использование электронного ключа (транзистора) с МОП структурой. Особенностью такого элемента является возможность коммутировать большие токи, при этом при коммутации различных токов омическое сопротивление открытого электронного ключа (транзистора) практически не зависит от величины тока и составляет незначительную величину (единицы мОм). Кроме того, транзисторы с МОП структурой изменяют свое сопротивление в зависимости от температуры перехода, причем это изменение носит, как правило, линейный характер.

В общем случае падение напряжения Uk на открытом электронного коммутаторе 3 можно представить в виде

U k = r K I H                                                                           ( 1 )

где IH - коммутируемый ток нагрузки, rK - сопротивление электронного коммутатора 3 в открытом (включенном) состоянии. Сопротивление электронного коммутатора rK можно представить в виде

r K = r 0 ( 1 + K 1 Δ t   )                                                                 ( 2 )

где r0 - сопротивление электронного коммутатора 3 при температуре t0, K1 - температурный коэффициент изменения сопротивления rK, Δt - разность температур относительно t0.

Будем предполагать, что электронный коммутатор 3 находится в открытом (включенном) состоянии, если на его вход управления подается положительный сигнал U2 с выхода первого элемента И 2 (U2=1), и в закрытом (выключенном) состоянии, если U2=0. Считаем также, что в исходном состоянии сигнал на инверсном выходе релейного элемента с гистерезисом 7 U7=1. В этом случае при сигнале на входной шине 1 UBX электронный коммутатор 3 находится в открытом (включенном) состоянии, при UBX=0 электронный коммутатор 3 находится в закрытом (выключенном) состоянии. Как следует из структурной схемы фиг.1, первый 6 и второй 11 электронные ключи функционируют синхронно с электронным коммутатором 3 (электронные ключи 6 и 11 открыты, если сигнал с выхода второго элемента И 5 U5=1, электронный ключ 6 закрыт, если сигнал U5=0 и его выходной сигнал U6=0).

Пусть уровень срабатывания релейного элемента с гистерезисом 7 выбран равным UП. Напряжение на входе релейного элемента 7 обозначим UС, выходной сигнал опорного источника напряжения 10 обозначим Uоп, сигнал на втором входе сумматора 12 обозначим UX. Напряжения UОП и UX связаны соотношением

U X = U О П R t / ( R 1 + R t )                                                                                ( 3 )

где Rt - сопротивление терморезистора, R1 - сопротивление резистора. На первый вход сумматора 12 поступает через первый электронный ключ 6 сигнал UX. Выходной сигнал сумматора 12 будет равен

U C = U X + U К = U О П R t / ( R 1 + R t ) + I H r 0 ( 1 + K 1 Δ t )                                     ( 4 )

Пусть релейный элемент с гистерезисом 7 срабатывает при токе IH=IH0. Введем обозначение U0=IH0. Тогда релейный элемент с гистерезисом 7 должен срабатывать при сигнале на выходе сумматора 12

U С = U О П R t / ( R 1 + R t ) + U 0 ( 1 + K 1 Δ t )                                                          ( 5 )

Выберем значение

R 1 > > R t                                                                                                        ( 6 )

В этом случае

U С = U О П R t / R 1 + U 0 ( 1 + K 1 Δ t )                                                                      ( 7 )

Выберем термосопротивление 9 с отрицательным коэффициентом температурного изменения К2, т.е. будем полагать, что

R t = R t 0 ( 1 K 2 Δ t )                                                                                           ( 8 )

где Rt0 - сопротивление терморезистора 9 при температуре t0. В этом случае

U С = U О П R t 0 ( 1 K 2 Δ t ) / R 1 + U 0 ( 1 + K 1 Δ t )                                                       ( 9 )

Пусть

U о п R t 0 / R 1 = U 0                                                                                                 ( 10 )

Равенство (10) достигается выбором значения опорного напряжения UОП.

Пусть также

K 1 = K 2                                                                                                      ( 11 )

Из равенства (9) с учетом (10) и (11) имеем

U C = 2 U 0 = U П                                                                                             ( 12 )

т.е. порог срабатывания релейного элемента с гистерезисом 7 должен быть равен

2 U0.

При падении напряжения на коммутаторе 3 UК, при котором UС=2U0, произойдет срабатывание релейного элемента с гистерезисом 7 (гистерезис релейного элемента 7 выбран равным 2U0). Выходной сигнал релейного элемента 7 U7=0 и выходные сигналы первого 2 и второго 5 элементов И будут равны соответственно U2=0 и U5=0. Эти сигналы выключают электронный коммутатор 3 и первый 6 и второй 11 электронные ключи. Электронный коммутатор 3 снимает напряжение с блока нагрузки 4.

Напряжение UП выбирается из условия заданного тока IH, при котором необходимо отключать напряжение с блока нагрузки 4, и известного сопротивления электронного коммутатора 3 rК в соответствии с (1). Если, например, rK=4 мОм и ток отключения IH=50 А, то UП выбирается равным 0,4 В. Если ток нагрузки IH превысит значение 50А, то электронный коммутатор 3 отключит напряжение от блока нагрузки 4. При отключении питания от блока нагрузки выключается также и первый 6 и второй 11 электронные ключи, которые снимают напряжения с входов сумматора12, что позволяет релейному элементу 7 находиться в выключенном состоянии.

Оценим погрешность предлагаемой схемы при r0=4 мОм, IH0=50 А, Rt0=1 кОм, K1=K2=0,01, R1=50 кОм. Из (10) величина опорного напряжения выбирается равной 10 В. Оценим погрешность δ для Δt=30°C. Значение сопротивления терморезистора Rt1 при Δt=30°С будет равно 0,7 кОм. Расчетное значение порога срабатывания UП=0,4 В. Фактическое значение порога срабатывания UПФ определим из (1), (2), (3) и (5). UПФ=0,398. Погрешность δ можно оценить в виде δ=(UП - ИПФ)/UП=0, 005,

что составляет 0,5%%. Погрешность формирования сигнала UК при Δt=30°C из (1) и (2) составляет 30%. Предлагаемая схема позволяет снизить погрешность формирования уровня отключения напряжения от блока нагрузки 4 до 0,5%.

По сравнению с известным коммутатором напряжения [2] предлагаемое изобретение позволяет снизить массу и габариты коммутатора за счет снятия требований по отводу тепла с датчика тока, который в предлагаемой схеме отсутствует. В известной схеме при использовании датчика тока с rш=4 мОм при токе 50А рассеивается мощность 10 Вт. Для отвода тепла в 10 Вт требуется металлическая отводящая поверхность площадью 2 дм2. При допустимом перегреве на датчике тока в 30°С по сравнению с температурой окружающей среды потребуется теплоотвод с теплоотводящей поверхностью 100×200 мм. При использовании в качестве теплоотвода алюминиевой пластины толщиной 5 мм масса теплоотвода составит 250 г, что для одного коммутатора является значительной величиной. При использовании электронных коммутаторов в системах управления, например, космических аппаратов дополнительная масса является существенным недостатком.

Предлагаемая совокупность признаков в рассмотренных авторами решениях не встречалась для решения поставленной задачи и не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии технического решения критериям "новизна" и "изобретательский уровень". В качестве элементов для реализации устройства могут быть использованы логические элементы И, например, серии 564, стандартные релейные элементы, электронные коммутаторы с МОП структурой, например, типа 2П7161 Б, электронные ключи, серии 564, резисторы и терморезисторы.

Литература

1. Патент РФ №2258302, кл. H03К 17/08, 2005 г.

2. Патент РФ №2208291, кл. H03К 17/08, 2003 г.

Похожие патенты RU2523024C1

название год авторы номер документа
КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ 2013
  • Леденев Геннадий Яковлевич
RU2523021C1
КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ 2013
  • Леденев Геннадий Яковлевич
RU2568307C2
КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ 2013
  • Леденев Геннадий Яковлевич
RU2542952C2
СПОСОБ ИМПУЛЬСНОГО РЕГУЛИРОВАНИЯ ЭЛЕКТРОДВИГАТЕЛЕЙ ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА 2009
  • Колоколов Юрий Васильевич
  • Тей Дмитрий Олегович
RU2430462C1
КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ 2006
  • Заводин Виталий Алексеевич
  • Павлов Александр Анатольевич
RU2321164C1
КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ 2001
  • Леденев Г.Я.
  • Федосов А.А.
RU2208292C2
КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ 2006
  • Федосов Алексей Александрович
RU2331978C2
КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ И ПЕРЕГРЕВА ЭЛЕКТРОННОГО КЛЮЧА 2006
  • Заводин Виталий Алексеевич
  • Павлов Александр Анатольевич
RU2319298C1
КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ 2006
  • Федосов Алексей Александрович
RU2331977C2
КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ 2001
  • Леденев Г.Я.
  • Федосов А.А.
RU2208291C2

Реферат патента 2014 года КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов. Технический результат заключается в снижении массы и габаритов коммутатора напряжения и повышении точности при изменении сопротивления электронного коммутатора в открытом состоянии в зависимости от температуры. Для этого заявленное устройство содержит электронный коммутатор с МОП структурой, который подает питание в блок нагрузки. Последовательно соединенные источник опорного напряжения, второй электронный ключ, резистор и терморезистор обеспечивают срабатывание релейного элемента с гистерезисом, практически независимым от температуры. Подключенный к общей точке коммутатора и блока нагрузки электронный ключ, выход которого соединен с входом сумматора, позволяют исключить из схемы датчик тока, который требует значительного отвода тепла. При наличии перегрузки по току осуществляется отключение питания от блока нагрузки. 1 ил.

Формула изобретения RU 2 523 024 C1

Коммутатор напряжения с защитой от перегрузки по току, содержащий входную шину, первый элемент И, релейный элемент с гистерезисом, инверсный выход которого соединен с первым входом первого элемента И, и последовательно соединенные электронный коммутатор и блок нагрузки, отличающийся тем, что электронный коммутатор выполнен в виде электронного ключа с МОП структурой, а, кроме того, в коммутатор напряжения дополнительно введены второй элемент И, первый электронный ключ, сумматор и последовательно соединенные источник опорного напряжения, второй электронный ключ, резистор и терморезистор, при этом инверсный выход релейного элемента с гистерезисом подключен к первому входу второго элемента И, второй вход которого соединен с входной шиной и вторым входом первого элемента И, выход второго элемента И соединен с входом управления первого и второго электронных ключей, вход релейного элемента с гистерезисом соединен с выходом сумматора, первый вход которого соединен с выходом первого электронного ключа, сигнальный вход которого подключен к общей точке электронного коммутатора и блока нагрузки, второй вход сумматора соединен с общей точкой резистора и терморезистора, вход управления электронного коммутатора соединен с выходом первого элемента И.

Документы, цитированные в отчете о поиске Патент 2014 года RU2523024C1

КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ 2001
  • Леденев Г.Я.
  • Федосов А.А.
RU2208291C2
КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ 2003
  • Леденев Г.Я.
RU2258302C2
КОММУТАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ ПО ТОКУ 2006
  • Заводин Виталий Алексеевич
  • Павлов Александр Анатольевич
RU2321164C1
Многоканальный коммутатор 1980
  • Полозов Сергей Васильевич
SU907800A1

RU 2 523 024 C1

Авторы

Леденев Геннадий Яковлевич

Даты

2014-07-20Публикация

2013-04-16Подача