СПОСОБ ЭКСПЛУАТАЦИИ ГОРЕЛКИ, ГОРЕЛКА, В ЧАСТНОСТИ ДЛЯ ГАЗОВОЙ ТУРБИНЫ И ГАЗОВАЯ ТУРБИНА Российский патент 2014 года по МПК F23R3/28 

Описание патента на изобретение RU2523519C2

Область техники, к которой относится изобретение

Изобретение относится к способу эксплуатации горелки, горелке и газовой турбине.

Уровень техники

Системы сжигания, основанные на предварительно смешанном струйном пламени, по сравнению с системами со стабилизированным завихрением дают преимущества благодаря распределенным зонам высвобождения тепла и отсутствию создающих завихрение вихрей, в частности с термоакустической точки зрения. За счет подходящего выбора струйного импульса могут создаваться мелкошкальные структуры течения, которые рассеивают акустически созданные колебания высвобождения тепла и тем самым подавляют пульсации давления, типичные для пламени со стабилизированным завихрением.

Струйное пламя стабилизируется за счет подмешивания горячих рециркулирующих газов. Для установления DOC-специфического состояния горения, которое отличается замедленным воспламенением свежего заряда и распределенной зоной высвобождения тепла, распределение топлива на тракте предварительного смешивания является важным параметром. Поскольку распределение топлива на тракте предварительного смешивания зависит не только от используемых распределителей топлива, но и от подачи воздуха к струйному соплу, которая может быть зависима также от нагрузки, приходится принимать дополнительные меры, чтобы надежно установить нужный топливный профиль.

Первой задачей изобретения является создание предпочтительного способа эксплуатации горелки. Вторая задача состоит в создании предпочтительной горелки. Третья задача состоит в создании предпочтительной газовой турбины.

Первая задача решается посредством способа по п.1, вторая - посредством горелки по п.8, а третья - посредством газовой турбины по п.16 формулы. Зависимые пункты формулы содержат другие предпочтительные варианты осуществления изобретения.

Предложенный способ эксплуатации горелки относится к горелке, включающей в себя ось и по меньшей мере одно струйное сопло. Обычно вокруг оси горелки расположено определенное число струйных сопел. По меньшей мере одно струйное сопло включает в себя среднюю ось, выход и стенку, обращенную к оси горелки в радиальном направлении, исходя от средней оси. Массовый поток текучей среды, включающий в себя топливо, течет через по меньшей мере одно струйное сопло к его выходу. Предложенный способ отличается тем, что на выходе струйного сопла между включающим в себя топливо массовым потоком текучей среды и обращенной к оси горелки стенкой создают пленку воздуха или инертного газа за счет того, что воздух или инертный газ вдувают вдоль обращенной к оси горелки стенки по меньшей мере в одно струйное сопло.

В рамках изобретения, по меньшей мере, участок стенки струйного сопла, находящийся между средней осью струйного сопла и осью горелки, называется обращенной к оси горелки стенкой.

Особенно предпочтительно, если в рамках способа в обращенной к оси горелки зоне выхода струйного сопла отсутствует или находится очень мало топлива. Слишком много топлива в этой зоне может привести к быстрому зажиганию пламени, что нежелательно. Поскольку в данном способе в этой зоне отсутствует или находится очень мало топлива, зажигание происходит с задержкой. Такое зажигание с задержкой обеспечивает, во-первых, большую длину смешивания, приводящую к уменьшению значения оксида азота, а, во-вторых, распределенное высвобождение тепла, благоприятное с термоакустической точки зрения.

В принципе, с помощью изобретения за счет целенаправленного вдувания воздуха или инертного газа для образования пленки в струйном сопле топливный профиль изменяется так, что, например, обращенная к оси горелки часть профиля не содержит или содержит очень мало топлива. При этом целью должно быть использование как можно меньшего количества воздуха или инертного газа для установления профиля.

По меньшей мере одно струйное сопло может иметь проходящее вокруг средней оси периферийное направление. В этом случае воздух или инертный газ может вдуваться в струйное сопло в периферийном направлении в угловом диапазоне по меньшей мере ±15° по отношению к радиальной соединительной линии между осью горелки и средней осью. Таким образом, достигается то, что обращенная к оси горелки часть топливного профиля не содержит или содержит очень мало топлива.

Кроме того, воздух или инертный газ может вдуваться в струйное сопло в периферийном направлении в угловом диапазоне по меньшей мере ±135°, в частности в угловом диапазоне самое большее ±45°, по отношению к радиальной соединительной линии между осью горелки и средней осью. В этом случае при наличии соседних струйных сопел воздух или инертный газ может вдуваться также на обращенных к соседним струям сторонах. Этот воздух или этот инертный газ предотвращает срастание струйного пламени и обеспечивает тем самым предпочтительную зону высвобождения тепла, желательную для основанных на струйном пламени горелочных систем. Вдувание воздуха или инертного газа на обращенных к соседним струям сторонах может происходить с двух сторон или только с одной стороны.

Кроме того, воздух может вдуваться в струйное сопло вокруг средней оси в асимметричном угловом диапазоне самое большее от -135° до +45° или самое большее от -45° до +135° по отношению к радиальной соединительной линии между осью горелки и средней осью. За счет этого достигается соответственно одностороннее вдувание воздуха или инертного газа на обращенных к соседним струям сторонах.

В принципе, по меньшей мере одно струйное сопло может иметь среднюю ось. Воздух или инертный газ может вдуваться в струйное сопло предпочтительно под углом 0-60° к средней оси.

Предложенная горелка включает в себя ось и по меньшей мере одно струйное сопло. Однако вокруг оси горелки может быть расположено также определенное число струйных сопел. По меньшей мере одно струйное сопло включает в себя среднюю ось и участок стенки (называемый ниже также обращенной к оси горелки стенкой), проходящий вокруг средней оси в угловом диапазоне самое большее от -135° до +135° и по меньшей мере от -15° до +15° по отношению к радиальной соединительной линии между осью горелки и средней осью. Предложенная горелка отличается тем, что исключительно участок стенки, проходящий вокруг средней оси в угловом диапазоне самое большее от -135° до +135° и по меньшей мере от -15° до +15°, включает в себя по меньшей мере один впадающий в струйное сопло проточный канал для подачи воздуха или инертного газа. Предложенная горелка подходит для осуществления описанного выше способа. В частности, проточный канал может быть связан с воздушным резервуаром или источником инертного газа.

Участок стенки, включающий в себя по меньшей мере один впадающий в струйное сопло проточный канал, может проходить, в частности, также вокруг средней оси в угловом диапазоне самое большее ±90°, в частности самое большее ±45° или самое большее от -45° до +135° или самое большее от -135° до +45°. В обои последних вариантах достигается соответственно одностороннее вдувание воздуха или инертного газа на обращенных к соседним струям сторонах.

Проточный канал может быть выполнен предпочтительно в виде расточки или частичной кольцевой щели. В частности, расточка может иметь среднюю ось, которая заключает со средней осью струйного сопла угол 0-60°, в частности 20-40°. Вдуваемый воздух или инертный газ, подхватываемый главным течением в струйном сопле, образует тогда особенно предпочтительную пленку. Расточка может иметь, например, круглое, эллиптическое или любое другое сечение. Предпочтительно расточка может иметь профилированное выходное сечение, соответствующее сечению пленкоохлаждающих отверстий. Аналогичным пленкоохлаждающему воздуху является такое задаваемое количество воздуха или инертного газа, чтобы он как можно меньше смешивался с главным течением.

В случае выполнения проточного канала в виде частичной кольцевой щели она может образовывать воображаемую частичную боковую поверхность конуса, которая может заключать со средней осью струйной горелки угол 0-60°, в частности 20-40°. Предпочтительным образом частичная кольцевая щель может включать в себя несколько сегментов. Это вызывает лучшую контролируемость величины щели.

Кроме того, частичная кольцевая щель может быть выполнена так, что она закрывается или открывается в зависимости от эксплуатационных условий. Она может быть выполнена, например, так, что она закрывается или открывается за счет теплового расширения конструктивного элемента, в частности за счет теплового расширения примыкающих деталей. Например, горелка может включать в себя пилотную топливную форсунку, а частичная кольцевая щель может быть выполнена так, что она закрывается или открывается в зависимости от температуры пилотной топливной форсунки. Так, в частности, горячая пилотная топливная форсунка в режиме частичной нагрузки может приводить к тому, что щель закрывается, тогда как щель при очень малом количестве пилотного газа, т.е. в случае более холодной по сравнению с режимом частичной нагрузки пилотной топливной форсунки, близко к основной нагрузке достигает максимальной величины.

Предложенная горелка обеспечивает использование воздушных пленок или пленок инертного газа с целью моделирования профиля смешивания для струйной горелки так, как это оптимально для эксплуатации.

Предложенная газовая турбина включает в себя по меньшей мере одну описанную выше горелку. Ее свойства и преимущества следуют из свойств и преимуществ описанной выше горелки. В целом изобретение за счет использования воздушных пленок или пленок инертного газа позволяет моделировать профиль смешивания для струйной горелки так, как это оптимально для эксплуатации газовой турбины.

Другие признаки, свойства и преимущества изобретения более подробно поясняются ниже на примере его осуществления со ссылкой на прилагаемые чертежи. При этом описанные признаки являются предпочтительными как по отдельности так и в комбинации между собой.

На чертежах изображают:

фиг.1 - схематично газовую турбину;

фиг.2 - схематично разрез струйной горелки поперек ее продольного направления;

фиг.3 - схематично разрез другой струйной горелки поперек ее продольного направления;

фиг.4 - схематично разрез части струйной горелки в продольном направлении;

фиг.5 - схематично неблагоприятный топливный профиль на выходе струйной горелки;

фиг.6 - схематично предпочтительный топливный профиль на выходе струйной горелки;

фиг.7 - схематично другой предпочтительный топливный профиль на выходе струйной горелки;

фиг.8 - схематично другой предпочтительный топливный профиль на выходе струйной горелки;

фиг.9 - схематично другой предпочтительный топливный профиль на выходе струйной горелки;

фиг.10 - схематично другой предпочтительный топливный профиль на выходе струйной горелки;

фиг.11 - схематично другой предпочтительный топливный профиль на выходе струйной горелки;

фиг.12 - схематично разрез части струйного сопла в продольном направлении;

фиг.13 - схематично разрез струйного сопла из фиг.12 по линии XIII-XIII.

Ниже примеры осуществления изобретения более подробно поясняются с помощью фиг.1-13. На фиг.1 схематично изображена газовая турбина. Она содержит внутри установленный с возможностью вращения вокруг оси вращения ротор с валом 107. Вдоль ротора последовательно установлены всасывающий корпус 109, компрессор 101, систему сжигания 151 с определенным числом струйных горелок 1, турбину 105 и корпус 190 для выпуска ОГ.

Система сжигания 151 сообщена с кольцеобразным каналом для горячих газов. Там несколько включенных друг за другом ступеней образуют турбину 105. Каждая ступень образована лопаточными кольцами. В направлении течения рабочего тела в канале для горячих газов за венцом 117 направляющих лопаток следует образованный рабочими лопатками 115 венец рабочих лопаток. При этом направляющие лопатки 117 закреплены на внутреннем корпусе статора, а рабочие лопатки 115 венца рабочих лопаток размещены, например, посредством диска турбины на роторе. К ротору присоединен генератор или рабочая машина.

Во время работы газовой турбины компрессор 101 через всасывающий корпус 109 всасывает и сжимает воздух. Воздух, сжатый на конце компрессора 101 со стороны турбины, подается к системе сжигания 151 и смешивается там с топливом. Затем смесь с помощью струйных горелок 1 сжигается в системе сжигания 151 с образованием рабочего тела. Оттуда рабочее тело течет вдоль канала для горячих газов мимо направляющих 117 и рабочих 115 лопаток. На рабочих лопатках 115 рабочее тело расширяется, передавая импульс, в результате чего они приводят в движение ротор, а тот - присоединенную к нему рабочую машину или присоединенный к нему генератор.

Система сжигания 151 включает в себя по меньшей мере одну предложенную горелку и может включать в себя, в принципе, кольцевую камеру сгорания или несколько трубчатых камер сгорания.

На фиг.2 схематично изображен разрез струйной горелки 1 перпендикулярно ее средней оси 4. Горелка 1 включает в себя корпус 6 в основном кругового сечения. Внутри корпуса 6 в основном кольцеобразно расположено определенное число струйных сопел 2. Каждое из них имеет круговое сечение. Кроме того, горелка 1 может включать в себя пилотную горелку.

На фиг.3 схематично изображен разрез альтернативной струйной горелки 1а, причем разрез проходит перпендикулярно ее средней оси. Горелка 1а также содержит корпус 6 кругообразного сечения, в котором расположено определенное число внешних 2 и внутренних 3 струйных сопел. Последние имеют кругообразное сечение, причем внешние струйные сопла 2 имеют такую же или большую площадь сечения, чем внутренние струйные сопла 3. Внешние струйные сопла 2 расположены внутри корпуса 6 в основном кольцеобразно и образуют внешнее кольцо. Внутренние струйные сопла 3 расположены внутри корпуса 6 также кольцеобразно. Они образуют внутреннее кольцо, концентричное внешнему кольцу струйных сопел.

На фиг.2 и 3 изображены лишь примеры расположения струйных сопел 2, 3 внутри струйных горелок 1, 1a. Разумеется, возможно альтернативное расположение, как и использование иного числа струйных сопел 2, 3.

На фиг.4 схематично изображен разрез части струйной горелки 1 в продольном направлении. Горелка 1 содержит по меньшей мере одно расположенное в корпусе 6 струйное сопло 2. Его средняя ось обозначена поз.5. Струйное сопло 2 имеет вход 8 и выход 9. К входу 8 примыкает камера сгорания 18. Кроме того, струйное сопло 2 расположено в корпусе 6 так, что вход 8 обращен к задней стенке 24 горелки 1. Корпус 6 имеет радиально по отношению к средней оси 4 горелки 1 внешнюю часть 127.

Струйное сопло 2 аэродинамически связано с компрессором. Выходящий из него сжатый воздух направляется через кольцевую щель 22 и/или через воздуховпускное отверстие 23 радиально по отношению к средней оси 5 струйного сопла 2 к входу 8. В случае если сжатый воздух подается к струйному соплу 2 через кольцевую щель 22, сжатый воздух течет через нее по направлению обозначенной поз.15 стрелки, т.е. параллельно средней оси 5 струйного сопла 2. Текущий по направлению стрелки 15 воздух отклоняется затем на задней стенке 24 горелки 1 на 180°, а затем течет через вход 8 в струйное сопло 2. Направление течения воздуха внутри струйного сопла 2 обозначено стрелкой 10.

Дополнительно или в качестве альтернативы подаче сжатого воздуха через кольцевую щель 22 выходящий из компрессора сжатый воздух может подаваться также через отверстие 23, выполненное в корпусе 6 горелки 1 радиально по отношению к средней оси 5 струйного сопла 2. Направление течения сжатого воздуха через отверстие 23 обозначено стрелкой 16. В этом случае сжатый воздух отклоняется на 90°, а затем течет через вход 8 в струйное сопло 2.

На выходе 8 находится топливная форсунка 19, через которую в струйное сопло 2 впрыскивается топливо 12. Направление течения топлива обозначено поз.17. Дополнительно или в качестве альтернативы топливная форсунка 19 может иметь на своей периферии топливовыпускные отверстия 119, через которые топливо может впрыскиваться по направлению штриховых стрелок 117.

Струйное сопло 2 имеет обращенную к оси 4 горелки стенку 7. Обращенной к оси горелки стенкой 7 обозначается, по меньшей мере, участок стенки струйного сопла, находящийся между средней осью 5 струйного сопла 1 и осью 4 горелки. Обращенная к оси горелки стенка 7 может проходить, в частности, вокруг средней оси 5 в угловом диапазоне самое большее от -135° до +135° и по меньшей мере от -15° до +15° по отношению к радиальной соединительной линии 26 между осью 4 горелки и средней осью 5.

В зоне обращенной к оси горелки стенки 7 внутри корпуса 6 находится связанная с компрессором воздухоподводящая линия 13. От нее внутрь струйного сопла 2 ведут воздуховпускные отверстия 14. В данном варианте они выполнены в виде расточек кругообразного сечения. Они имеют соответственно среднюю ось 27, которая заключает со средней осью 5 струйного сопла 2 угол β, который может составлять, например, 0-60°, в частности 20-40°.

Вместо воздуха по подводящей линии может подаваться также инертный газ. В этом случае линия 13 связана не с компрессором, а с резервуаром с инертным газом или источником инертного газа.

Через воздухоподводящую линию 13 и воздуховпускные отверстия 14 воздух вдувается в струйное сопло 2 так, что он подхватывается обозначенным стрелкой 10 основным потоком, поэтому вдоль обращенной к оси 4 горелки стенки 7 образуется воздушная пленка. Направление течения вдуваемого воздуха обозначено поз.20.

Горелка 1 может быть выполнена, в принципе, также без внешней части 127 корпуса или без внешнего корпуса 127. В этом случае сжатый воздух может течь прямо в «пленум», т.е. в зону между задней стенкой 24 и входом 8 струйного сопла. Горелка 1 может быть выполнена также без задней стенки 24.

На фиг.5 схематично изображен топливный профиль, создаваемый без образования воздушной пленки на обращенной к оси горелки стенке на выходе струйного сопла. Радиальная соединительная линия между средней осью 5 струйного сопла 2 и средней осью 4 горелки 1 обозначена для ориентации поз.26.

Схематично изображенный на фиг.5 топливный профиль отличается тем, что во внешней зоне струйного сопла 2, т.е. на его стенке, образуется обогащенный топливом участок 25. Два других обогащенных топливом участка 25 находятся вблизи средней оси 5 струйного сопла 2. Кроме того, вблизи его средней оси 5 находятся свободный от топлива или бедный топливом участок 21 и участок 22, на котором преобладает нужная топливно-воздушная смесь 22. Схематично изображенный на фиг.5 топливный профиль невыгоден, поскольку на обращенной к оси горелки стенке 7 преобладает топливо 25. Этот обогащенный топливом участок 25 вызван притоком топлива к струйному соплу 2.

С помощью предложенного способа, т.е. за счет вдувания воздуха вдоль обращенной к оси горелки стенки 7 с образованием воздушной пленки, создается схематично изображенный на фиг.6 топливный профиль. Этот профиль отличается тем, что на обращенной к оси горелки стенке 7 преобладает свободный от топлива участок 21. В идеальном случае от свободен от топлива, однако может быть также бедным топливом. Изображенный на фиг.6 топливный профиль предпочтителен, поскольку воздушная пленка 21 на обращенной к оси горелки стенке 7 препятствует раннему зажиганию струйного пламени и обеспечивает распределенную зону высвобождения тепла.

На фиг.7-12 схематично изображены различные топливные профили на выходе 9 струйного сопла, создаваемые предложенным способом, в частности с использованием предложенной горелки. Изображенный на фиг.7 топливный профиль отличается тем, что вдоль оси 4 горелки под углом от -α до +α вокруг средней оси 5 струйного сопла 2 исходя от радиальной соединительной линии 26 между средней осью 5 струйного сопла 2 и осью 4 горелки образуется свободный от топлива или бедный топливом участок 21. Угол α составляет на фиг.7 примерно 45°. Свободный от топлива или бедный топливом участок 21 создается за счет вдувания воздуха под углом от -α до +α вокруг средней оси 5 струйного сопла 2 исходя от соединительной линии 26. На фиг.8 угол α составляет 90°, на фиг.9 - 15°, а на фиг.10 - 135°.

Изображенный на фиг.10 топливный профиль отличается от профилей на фиг.7 и 9 тем, что дополнительно к экранированию топлива воздушной пленкой по направлению к оси 4 горелки достигается также экранирование от соседних струйных сопел, что препятствует сращиванию пламени.

Изображенный на фиг.11 топливный профиль отличается свободным от топлива или бедным топливом участком 21, который проходит в асимметричном угловом диапазоне от -135° до +45° вокруг средней оси 5 струйного сопла 2 исходя от соединительной линии 26. Благодаря профилю на фиг.11 достигается одностороннее экранирование от соседнего струйного сопла и по направлению к средней оси 4 горелки. Эта конфигурация предпочтительна для поддержания минимальным количества используемого воздуха или инертного газа.

На фиг.12 и 13 изображен другой вариант горелки с частичной кольцевой щелью. На фиг.12 схематично изображен разрез части струйного сопла в продольном направлении. На фиг.13 изображен разрез струйного сопла из фиг.12 поперек средней оси 5.

Изображенное на фиг.12 и 13 струйное сопло 2 имеет частичную кольцевую щель 28. Через нее в направлении 20 течения внутрь струйного сопла 2 вдувается воздух. Вследствие течения 22 протекающей через струйное сопло 2 топливно-воздушной смеси вдоль обращенной к оси горелки стенки 7 образуется воздушная пленка.

Частичная кольцевая щель 28 образует воображаемую частичную боковую поверхность конуса, которая обозначена поз.29 и заключает со средней осью 5 струйного сопла 2 угол β 0-60°, в частности 20-40°.

На фиг.13 схематично изображен разрез струйного сопла 2 из фиг.12 по линии XIII-XIII. Частичная кольцевая щель 28 включает в себя несколько сегментов, в данном варианте три сегмента 30. Выполнение частичной кольцевой щели 28 из нескольких сегментов 30 обеспечивает лучшую контролируемость величины щели, в частности возможность контроля и настройки углового диапазона α для образуемой воздушной пленки. Кроме того, выполнение из сегментов 30 вызывает повышенную стабильность струйного сопла 2 в зоне частичной кольцевой щели 28.

Частичная кольцевая щель 28 может быть выполнена так, что она закрывается или открывается в зависимости от эксплуатационных условий, например вследствие теплового расширения конструктивного элемента. В частности, горелка 1 может включать в себя по меньшей мере одну пилотную топливную форсунку, а частичная кольцевая щель 28 может быть выполнена так и находиться в тепловом контакте с пилотной топливной форсункой так, что она закрывается или открывается в зависимости от ее температуры. Например, в режиме частичной нагрузки горячая пилотная топливная форсунка может привести к тому, что частичная кольцевая щель 28 закрывается, тогда как она при очень малом количестве пилотного газа близко к основной нагрузке, т.е. в случае более холодной пилотной топливной форсунки, достигает максимальной величины.

Похожие патенты RU2523519C2

название год авторы номер документа
ГОРЕЛКА, В ЧАСТНОСТИ, ДЛЯ ГАЗОВЫХ ТУРБИН 2010
  • Бётчер Андреас
  • Кано Вольф Мариано
  • Клуге Андре
  • Кригер Тобиас
  • Вёрц Ульрих
RU2533045C2
ГОРЕЛКА, В ЧАСТНОСТИ, ДЛЯ ГАЗОВЫХ ТУРБИН 2010
  • Бётчер Андреас
  • Кано Вольф Мариано
  • Клуге Андре
  • Кригер Тобиас
  • Старинг Саша
  • Вёрц Ульрих
RU2536465C2
ГОРЕЛКА ГАЗОВОЙ ТУРБИНЫ И ГАЗОВАЯ ТУРБИНА 2007
  • Бётчер Андреас
  • Клуге Андре
  • Круш Клаус
  • Пфайфер Эльмар
  • Тюшен Сабине
RU2439433C2
НАПРАВЛЯЮЩАЯ ЛОПАТКА, ГОРЕЛКА И ГАЗОВАЯ ТУРБИНА 2010
  • Бётчер Андреас
  • Кано Вольф Мариано
  • Клуге Андре
  • Кригер Тобиас
  • Старинг Саша
  • Вёрц Ульрих
RU2535433C2
КАМЕРА СГОРАНИЯ ГАЗОВОЙ ТУРБИНЫ И ГАЗОВАЯ ТУРБИНА 2019
  • Цукидате, Хиронори
  • Ога, Кунихиро
  • Терада, Йоситака
  • Нисида, Коити
RU2727946C1
ГОРЕЛКА И ГАЗОВАЯ ТУРБИНА, СОДЕРЖАЩАЯ ТАКУЮ ГОРЕЛКУ 2010
  • Гриб Томас
  • Вёрц Ульрих
  • Хазе Матиас
  • Бётчер Андреас
  • Рубио Марк Ф.
  • Шмитц Удо
  • Кауфманн Петер
  • Кребс Вернер
  • Кригер Тобиас
  • Лапп Патрик
  • Фогтманн Даниель
RU2541482C2
ГОРЕЛКА ДЛЯ ГАЗОВОЙ ТУРБИНЫ, В КОТОРОЙ В КАЧЕСТВЕ ТОПЛИВА ИСПОЛЬЗУЮТ ГАЗ С НИЗКОЙ ТЕПЛОТВОРНОЙ СПОСОБНОСТЬЮ 2007
  • Гоббо Паоло
  • Бонцани Федерико
  • Делла Фиоре Лорена
RU2430308C2
ГОРЕЛКА ГАЗОВОЙ ТУРБИНЫ И СПОСОБ СМЕШИВАНИЯ ТОПЛИВА И ВОЗДУХА В ЗОНЕ ЗАВИХРЕНИЯ В ГОРЕЛКЕ ГАЗОВОЙ ТУРБИНЫ 2006
  • Уилбрэхэм Найджел
RU2429413C2
СТАБИЛИЗАЦИЯ ПЛАМЕНИ ГОРЕЛКИ 2010
  • Хазе Маттиас
  • Кребс Вернер
  • Праде Бернд
RU2533609C2
КАМЕРА СГОРАНИЯ ДЛЯ ГАЗОВОЙ ТУРБИНЫ 1995
  • Хельмут Магхон
RU2133916C1

Иллюстрации к изобретению RU 2 523 519 C2

Реферат патента 2014 года СПОСОБ ЭКСПЛУАТАЦИИ ГОРЕЛКИ, ГОРЕЛКА, В ЧАСТНОСТИ ДЛЯ ГАЗОВОЙ ТУРБИНЫ И ГАЗОВАЯ ТУРБИНА

Предложен способ эксплуатации горелки, содержащей ось и по меньшей мере одно струйное сопло. Одно струйное сопло включает среднюю ось, выход и стенку, обращенную к оси горелки в радиальном направлении, исходя от средней оси. Массовый поток текучей среды, включающий топливо, течет через по меньшей мере одно струйное сопло к его выходу. На выходе струйного сопла между включающим топливо массовым потоком текучей среды и обращенной к оси горелки стенкой создают пленку воздуха или инертного газа за счет того, что воздух или инертный газ вдувают вдоль обращенной к оси горелки стенки по меньшей мере в одно струйное сопло. Другим объектом настоящего изобретения является горелка, включающая ось и по меньшей мере одно струйное сопло. Одно струйное сопло включает среднюю ось и участок стенки, проходящий вокруг средней оси в угловом диапазоне самое большее от -135° до +135° и по меньшей мере от -15° до +15° по отношению к радиальной соединительной линии между осью горелки и средней осью. Исключительно участок стенки, проходящий вокруг средней оси в угловом диапазоне самое большее от -135° до +135° и по меньшей мере от -15° до +15°, включает в себя по меньшей мере один впадающий в струйное сопло проточный канал для подачи воздуха или инертного газа. Также объектом изобретения является газовая турбина, содержащая одну горелку, описанную выше. Изобретение позволяет оптимизировать использование воздушных пленок или пленок инертного газа для эксплуатации струйной горелки. 3 н. и 13 з.п. ф-лы, 13 ил.

Формула изобретения RU 2 523 519 C2

1. Способ эксплуатации горелки (1), содержащей ось (4) и по меньшей мере одно струйное сопло (2), причем по меньшей мере одно струйное сопло (2) включает среднюю ось (5), выход (9) и стенку (7), обращенную к оси (4) горелки в радиальном направлении, исходя от средней оси (5), а массовый поток текучей среды, включающий топливо, течет через по меньшей мере одно струйное сопло (2) к его выходу (9), отличающийся тем, что на выходе (9) струйного сопла (2) между включающим топливо массовым потоком текучей среды и обращенной к оси горелки стенкой (7) создают пленку (20) воздуха или инертного газа за счет того, что воздух или инертный газ вдувают вдоль обращенной к оси горелки стенки (7) по меньшей мере в одно струйное сопло (2).

2. Способ по п.1, отличающийся тем, что струйное сопло имеет проходящее вокруг средней оси (5) периферийное направление, а воздух или инертный газ вдувают в струйное сопло (2) в периферийном направлении в угловом диапазоне по меньшей мере ±15° по отношению к радиальной соединительной линии (26) между осью (4) горелки и средней осью (5).

3. Способ по п.2, отличающийся тем, что струйное сопло имеет проходящее вокруг средней оси (5) периферийное направление, а воздух или инертный газ вдувают в струйное сопло (2) в периферийном направлении в угловом диапазоне по меньшей мере ±135° по отношению к радиальной соединительной линии (26) между осью (4) горелки и средней осью (5).

4. Способ по п.3, отличающийся тем, что струйное сопло имеет проходящее вокруг средней оси (5) периферийное направление, а воздух или инертный газ вдувают в струйное сопло (2) в периферийном направлении в угловом диапазоне по меньшей мере ±90° по отношению к радиальной соединительной линии (26) между осью (4) горелки и средней осью (5).

5. Способ по п.4, отличающийся тем, что струйное сопло имеет проходящее вокруг средней оси (5) периферийное направление, а воздух или инертный газ вдувают в струйное сопло (2) в периферийном направлении в угловом диапазоне по меньшей мере ±45° по отношению к радиальной соединительной линии (26) между осью (4) горелки и средней осью (5).

6. Способ по п.3, отличающийся тем, что струйное сопло имеет проходящее вокруг средней оси (5) периферийное направление, а воздух или инертный газ вдувают в струйное сопло (2) вокруг средней оси (5) в угловом диапазоне самое большее от -135° до +45° или самое большее от -45° до +135° по отношению к радиальной соединительной линии (26) между осью (4) горелки и средней осью (5).

7. Способ по одному из пп.1-6, отличающийся тем, что воздух или инертный газ вдувают в струйное сопло (2) под углом (β) 0-60° к средней оси (5).

8. Горелка (1), включающая ось (4) и по меньшей мере одно струйное сопло (2), причем по меньшей мере одно струйное сопло (2) включает среднюю ось (5) и участок (7) стенки, проходящий вокруг средней оси в угловом диапазоне самое большее от -135° до +135° и по меньшей мере от -15° до +15° по отношению к радиальной соединительной линии (26) между осью (4) горелки и средней осью (5), отличающаяся тем, что исключительно участок (7) стенки, проходящий вокруг средней оси (5) в угловом диапазоне самое большее от -135° до +135° и по меньшей мере от -15° до +15°, включает в себя по меньшей мере один впадающий в струйное сопло (2) проточный канал (14) для подачи воздуха или инертного газа.

9. Горелка по п.8, отличающаяся тем, что проточный канал выполнен в виде расточки (14) или частичной кольцевой щели (28).

10. Горелка по п.9, отличающаяся тем, что расточка (14) имеет среднюю ось (27), которая расположена по отношению к средней оси (5) струйного сопла (2) под углом (β) 0-60°, или частичная кольцевая щель (28) образует воображаемую частичную боковую поверхность (29) конуса, которая расположена по отношению к средней оси (5) струйного сопла (2) под углом (β) 0-60°.

11. Горелка по п.9, отличающаяся тем, что расточка (14) имеет круглое или эллиптическое сечение, или частичная кольцевая щель (28) включает несколько сегментов (30).

12. Горелка по одному из пп.9-11, отличающаяся тем, что расточка (14) имеет профилированное выходное сечение, соответствующее пленкоохлаждающим отверстиям.

13. Горелка по одному из пп.9-11, отличающаяся тем, что частичная кольцевая щель (28) выполнена с возможностью закрывания или открывания в зависимости от эксплуатационных условий.

14. Горелка по п.13, отличающаяся тем, что частичная кольцевая щель (28) выполнена с возможностью закрывания или открывания за счет теплового расширения конструктивного элемента.

15. Горелка по п.13, отличающаяся тем, что она содержит пилотную топливную форсунку, а частичная кольцевая щель (28) выполнена с возможностью закрывания или открывания в зависимости от температуры пилотной топливной форсунки.

16. Газовая турбина, содержащая по меньшей мере одну горелку (1) по одному из пп.8-15.

Документы, цитированные в отчете о поиске Патент 2014 года RU2523519C2

ТОПЛИВНАЯ ФОРСУНКА С ПРЕДВАРИТЕЛЬНЫМ СМЕШЕНИЕМ ТОПЛИВА (ВАРИАНТЫ), И СПОСОБ СЖИГАНИЯ ТОПЛИВА (ВАРИАНТЫ) 1998
  • Снайдер Тимоти С.
  • Сова Уильям А.
  • Морфорд Стефен А.
  • Ван Дайк Кевин Дж.
RU2215243C2
Способ предпосевной обработки семян сельскохозяйственных культур 1984
  • Чернявский Алексей Филиппович
  • Мирошник Виталий Михайлович
  • Троценко Владимир Владимирович
  • Кремезный Леонид Анатольевич
  • Кунец Алексей Николаевич
SU1331441A1
US 5263316 A, 23.11.1993
Устройство для выгрузки мусора из мусоропровода 1987
  • Гонцов А.В.
  • Белотелов В.А.
  • Прокопенко Н.Г.
  • Сметанин А.В.
  • Толмачев А.А.
SU1526332A1
WO 9516881 A1, 22.06.1995
КАМЕРА СГОРАНИЯ 2002
  • Кашапов Р.С.
  • Максимов Д.А.
  • Скиба Д.В.
  • Куликов С.В.
  • Баштанников М.Н.
RU2241177C2
RU 2055271 C1, 27.02.1996

RU 2 523 519 C2

Авторы

Хазе Маттиас

Даты

2014-07-20Публикация

2010-03-16Подача