СПОСОБ ИЗГОТОВЛЕНИЯ ИНТЕГРАЛЬНО-ОПТИЧЕСКОЙ СХЕМЫ В СТЕКЛЯННОЙ ПОДЛОЖКЕ С РУПОРООБРАЗНЫМ ВОЛНОВОДОМ Российский патент 2014 года по МПК G02B6/13 

Описание патента на изобретение RU2524460C1

Изобретение относится к интегральной оптике и используется для изготовления интегрально-оптических схем в стеклянных подложках.

Известен способ изготовления интегрально-оптических схем в стеклах, основанный на ионном обмене [Свечников Г.С. Интегральная оптика. Киев: Наукова думка, 1988, 166 с.]. Согласно этому способу при погружении стеклянной подложки в расплав солей происходит замена низкопреломляющих ионов стекла высокопреломляющими ионами из расплава, что приводит к увеличению показателя преломления в приповерхностном слое стеклянной подложки. Применяя маскирование подложки и проводя ионный обмен через окна маски, можно получать волноводные структуры различной конфигурации, т.е. создавать различные пассивные интегрально-оптические схемы. Однако этот способ не позволяет получать интегрально-оптические схемы, канальные волноводы которых оканчиваются рупорообразными элементами для упрощения ввода оптического излучения.

Наиболее близким к заявляемому является способ изготовления интегрально-оптических схем в стеклянных подложках [Гладкий В.П., Никитин В.А., Прохоров В.П., Яковенко Н.А. Элементы волноводной оптоэлектроники для устройств функциональной обработки цифровой информации/ Квантовая электроника, 22, №10, 1995, с. 1027-1033]. Согласно этому способу одну из плоскостей стеклянной подложки с маскирующим слоем, в котором созданы отверстия для формирования волноводов, приводят в соприкосновение с расплавом соли, содержащей ионы, способные увеличивать показатель преломления стекла в процессе диффузии. На противоположной плоскости стеклянной пластинки находится тонкопленочный катод. Между расплавом соли и тонкопленочным катодом прикладывается стимулирующее диффузию ионов электрическое поле.

Этот способ позволяет получать интегрально-оптические схемы в стеклянных подложках, но их канальные волноводы имеют неизменные геометрические размеры на всем протяжении, поскольку формируются под действием однородного электрического поля между расплавом соли и тонкопленочным катодом.

Техническим результатом является создание интегрально-оптической схемы, имеющей канальный волновод, выполненный в виде рупора с изменяющейся геометрией, что упрощает ввод оптического излучения.

Для достижения технического результата при изготовлении интегрально-оптической схемы наносят на одну из плоскостей стеклянной подложки маскирующий слой, имеющий отверстия для формирования интегрально-оптической схемы, с канальным волноводом для ввода излучения. На противоположной плоскости стеклянной подложки располагают игольчатый катод напротив канального волновода у края подложки. Стеклянную подложку приводят в соприкосновение с расплавом соли, содержащей ионы, способные увеличивать показатель преломления стекла в процессе диффузии. Между игольчатым катодом и расплавом соли с анодом прикладывают стимулирующее напряжение. В результате ионного обмена в стеклянной подложке формируют интегрально-оптическую схему с канальным волноводом, выполненным в виде рупора, под действием неоднородного электрического стимулирующего поля.

Отличие заявляемого способа от прототипа заключается в том, что расположение катода, выполненного игольчатым, у края стеклянной подложки напротив канального волновода при изготовлении интегрально-оптической схемы методом ионного обмена позволяет проводить локальную электростимулированную миграцию ионов, что придает ему рупоробразную форму.

Заявляемые отличия позволяют создавать интегрально-оптические схемы с канальными волноводами в виде рупоров, что упрощает ввод оптического излучения.

На фиг.1 представлена схема изготовления интегрально-оптической схемы с рупорообразным волноводом для ввода излучения; на фиг.2 - рупорообразный волновод, создаваемый на конце канального волновода в результате электростимулированной миграции ионов из расплава соли, и линия (А-А′) обреза подложки; на фиг.3 - интегрально-оптическая схема с рупорообразным волноводом, получаемым в результате локальной электростимулированной миграции ионов в стекле; на фиг.4а изображен вход рупорообразного волновода; на фиг.4б - выход рупорообразного канального волновода, изготовленного по предлагаемому способу.

Для осуществления способа на одну из плоскостей стеклянной подложки 1 наносят маскирующий алюминиевый слой 2, в котором фотолитографией создают отверстия. На противоположной стороне стеклянной подложки 1 располагают игольчатый катод 3 напротив канального волновода у края подложки 1. Стеклянную подложку 1 с маскирующим алюминиевым слоем 2 приводят в контакт с расплавом соли 4, содержащей ионы металла, способные при внедрении в стекло увеличивать его показатель преломления. Внешнее электрическое поле, стимулирующее процесс локального внедрения ионов в стеклянную подложку 1 из расплава соли 4, прикладывают между игольчатым электродом 3 и анодом 5, погруженным в расплав соли 4. К расплаву 4 прикладывают положительный потенциал, а к игольчатому электроду 3 - отрицательный потенциал источника постоянного тока (на фигурах не изображен).

При подаче напряжения на электроды 3 и 5 в стеклянной подложке 1 с маскирующим алюминиевым слоем 2, имеющем отверстия для формирования канального волновода 6 интегрально-оптической схемы 7, возникает электрическое поле, стимулирующее процесс локального внедрения ионов из расплава соли 4 в стеклянную подложку 1. В процессе электростимулированной миграции ионов напротив игольчатого электрода 3 в стеклянной подложке 1 формируется волновод 6, имеющий рупоробразную форму (фиг.2). По окончании процесса формирования интегрально-оптической схемы 7 маскирующий слой 2 удаляют, а торец стеклянной подложки 1 обрезают вдоль линии А-А′ (фиг.3).

Пример. Для изготовления интегрально-оптической схемы 7 с рупорообразным волноводом 6 для ввода излучения использовалась подложка 1 из стекла от фотопластин размером 30×30×1,25 мм. На одну плоскость стеклянной подложки 1 методом термического напыления наносился маскирующий слой алюминия 2 толщиной 0,6 мкм, в котором фотолитографией создавались отверстия (на фигурах не указаны) для формирования интегрально-оптической схемы 7. На противоположной плоскости стеклянной подложки 1 располагался игольчатый катод 3 напротив канального волновода 6 у края подложки 1. Стеклянная подложка 1 приводилась в соприкосновение с расплавом солей AgNO3 и NaNO3, взятых в молярном соотношении 1:10. Температура расплава была 380°C, время электростимулированной миграции ионов - 30 минут. Между игольчатым катодом 3 и расплавом соли 4 прикладывалось стимулирующее напряжение величиной 50 B. После окончания процесса электростимулированной миграции ионов, стеклянная подложка 1 охлаждалась и помещалась в 30% раствор KOH для удаления маскирующего слоя алюминия 2. Торцы подложки 1 обрезали и полировали для осуществления ввода и вывода оптического излучения. В результате была изготовлена интегрально-оптическая схема 7, оканчивающаяся рупорообразным волноводом 6 для ввода излучения. На фиг.4 представлены внешний вид и размеры входного (фиг.4а) и выходного (фиг.4б) торцов рупорообразного волновода 6 для ввода излучения в интегрально-оптическую схему.

Из уровня техники неизвестны способы изготовления рупорообразных волноводов, наличие которых упрощает ввод оптического излучения в интегрально-оптическую схему. Таким образом, совокупность заявляемых признаков позволяет достичь технического результата.

Похожие патенты RU2524460C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ИНТЕГРАЛЬНЫХ МИКРОЛИНЗ 2005
  • Яковенко Николай Андреевич
  • Никитин Валерий Александрович
  • Векшин Михаил Михайлович
  • Никитин Александр Валериевич
RU2312833C2
Способ изготовления интегральных микролинз 2016
  • Яковенко Николай Андреевич
  • Никитин Валерий Александрович
  • Векшин Михаил Михайлович
RU2643824C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИНТЕГРАЛЬНЫХ МИКРОЛИНЗ 2007
  • Яковенко Николай Андреевич
  • Никитин Валерий Александрович
  • Никитин Александр Валериевич
RU2341474C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИНТЕГРАЛЬНЫХ МИКРОЛИНЗ 1993
  • Никитин В.А.
  • Никитина Е.П.
  • Яковенко Н.А.
RU2073659C1
ИНТЕГРАЛЬНО-ОПТИЧЕСКИЙ ДЕЛИТЕЛЬ ИЗЛУЧЕНИЯ 2006
  • Яковенко Николай Андреевич
  • Никитин Валерий Александрович
  • Никитин Александр Валериевич
RU2338224C2
Термостойкий интегрально-оптический делитель излучения 2019
  • Смирнов Иван Юрьевич
  • Иванов Сергей Александрович
  • Стародубцев Юрий Иванович
  • Алисевич Евгения Александровна
RU2718669C1
Способ изготовления интегральных микролинз 1989
  • Горина Ирина Ивановна
  • Никитин Валерий Александрович
  • Яковенко Николай Андреевич
SU1694502A1
ИНТЕГРАЛЬНО-ОПТИЧЕСКИЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2009
  • Мешковский Игорь Касьянович
  • Серебрякова Владлена Сергеевна
RU2425402C1
ИНТЕГРАЛЬНО-ОПТИЧЕСКИЙ ПРОСТРАНСТВЕННЫЙ РАЗДЕЛИТЕЛЬ ПОЛЯРИЗАЦИИ НА ОСНОВЕ АСИММЕТРИЧНОГО Y-РАЗВЕТВИТЕЛЯ 2011
  • Кулиш Ольга Александровна
  • Векшин Михаил Михайлович
RU2461921C1
ИНТЕГРАЛЬНО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ПОЛЯРИЗАЦИИ ИЗЛУЧЕНИЯ НА ОСНОВЕ АСИММЕТРИЧНОГО ВОЛНОВОДА В СТЕКЛЕ 2018
  • Кулиш Ольга Александровна
  • Векшин Михаил Михайлович
  • Комиссарова Татьяна Петровна
RU2682070C1

Иллюстрации к изобретению RU 2 524 460 C1

Реферат патента 2014 года СПОСОБ ИЗГОТОВЛЕНИЯ ИНТЕГРАЛЬНО-ОПТИЧЕСКОЙ СХЕМЫ В СТЕКЛЯННОЙ ПОДЛОЖКЕ С РУПОРООБРАЗНЫМ ВОЛНОВОДОМ

Изобретение относится к интегральной оптике и используется для изготовления интегрально-оптических схем в стеклянных подложках. Согласно способу на одну из плоскостей стеклянной подложки наносят маскирующий слой, имеющий отверстия для формирования интегрально-оптической схемы, с канальным волноводом для ввода излучения. На противоположной плоскости стеклянной подложки располагают игольчатый катод напротив канального волновода у края подложки. Стеклянную подложку приводят в соприкосновение с расплавом соли, содержащей ионы, способные увеличивать показатель преломления стекла в процессе диффузии. Между игольчатым катодом и расплавом соли с анодом прикладывают стимулирующее напряжение. Технический результат - обеспечение канального волновода, выполненный в виде рупора с изменяющейся геометрией для упрощения ввода оптического излучения. 5 ил.

Формула изобретения RU 2 524 460 C1

Способ изготовления интегрально-оптической схемы в стеклянной подложке, заключающийся в том, что одну из плоскостей стеклянной подложки с маскирующим слоем с отверстиями для формирования интегрально-оптической схемы приводят в соприкосновение с расплавом соли, содержащей ионы, способные увеличивать показатель преломления стекла в процессе диффузии, а на противоположной плоскости стеклянной подложки располагают катод, отличающийся тем, что используют катод, выполненный в виде иглы, и располагают его напротив канального волновода у края подложки.

Документы, цитированные в отчете о поиске Патент 2014 года RU2524460C1

НИКИТИН А.В., ИССЛЕДОВАНИЕ И РАЗРАБОТКА ИНТЕГРАЛЬНО-ОПТИЧЕСКИХ МИКРОЛИНЗОВЫХ СТРУКТУР В СТЕКЛАХ, КРАСНОДАР 2009
СПОСОБ ИЗГОТОВЛЕНИЯ ИНТЕГРАЛЬНЫХ МИКРОЛИНЗ 2007
  • Яковенко Николай Андреевич
  • Никитин Валерий Александрович
  • Никитин Александр Валериевич
RU2341474C1
УСТРОЙСТВО ДЛЯ НЕПРЕРЫВНОГО ПИТАНИЯ ТКАЦКОГО СТАНКА УТКОМ С НЕПОДВИЖНО УСТАНОВЛЕННЫХ БОБИН 1954
  • Киквадзе С.И.
SU100638A1
ИНТЕГРАЛЬНО-ОПТИЧЕСКИЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2009
  • Мешковский Игорь Касьянович
  • Серебрякова Владлена Сергеевна
RU2425402C1

RU 2 524 460 C1

Авторы

Яковенко Николай Андреевич

Никитин Валерий Александрович

Векшин Михаил Михайлович

Даты

2014-07-27Публикация

2013-02-14Подача