СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ КОМПРЕССИОННОГО БЫТОВОГО ХОЛОДИЛЬНОГО ПРИБОРА Российский патент 2014 года по МПК F25B45/00 

Описание патента на изобретение RU2525058C1

Изобретение относится к холодильной технике, в частности к методам и способам определения технического состояния компрессионных холодильных машин, преимущественно бытовых холодильных приборов (БХП), путем измерения диагностических параметров, и может найти применение в модулях самодиагностики БХП, для диагностики технического состояния холодильников при ремонте в сервисных центрах, а также при ремонте промышленной холодильной техники, при исследовании или диагностике модернизируемых подсистем холодильного агрегата.

Известны методы и устройства для определения технического состояния и диагностики бытовых холодильных приборов.

Одним из способов определения технического состояния бытового холодильного прибора является способ его испытания с применением специальных стендов. Например, способ, реализуемый на переносном стенде СХ-2 (Лепаев Д.А. Ремонт бытовых холодильников. М.: Легпромбытиздат, 1989, с.255-258) /1/. При использовании этого стенда измеряется время работы мотор-компрессора и время нахождения его в выключенном состоянии на основании результатов измерений в регламентируемых условиях, например, согласно ГОСТ 16317-87 «Приборы холодильные электрические бытовые. Общие технические условия» /2/, вычисляется коэффициент рабочего времени (КРВ), значение которого сравнивается с КРВ эталонного холодильника или с регламентируемыми эталонными значениями КРВ для конкретных моделей холодильника. Одновременно с КРВ измеряется температура в камерах холодильника, которая сравнивается с регламентируемыми значениями температуры для конкретных режимов испытания БХП, для их типовых моделей, в соответствии с климатическим классом БХП согласно ГОСТ 30204-95. Эксплуатационные характеристики БХП. Методы испытаний /3/.

Достоинством этого способа является то, что измерение времени работы и стоянки компрессора позволяют вычислять один из важных энергетических показателей работы герметичного компрессора - коэффициент рабочего времени (КРВ) компрессора, являющийся интегральной характеристикой технического состояния всего холодильника.

КРВ косвенно характеризует холодопроизводительность агрегата в целом и герметичность холодильного шкафа. Прибор позволяет реализовать метод измерения температур в холодильном и морозильном отделениях и сравнивать опорные (эталонные) КРВ с фактическими, измеренными после определенного периода эксплуатации. При этом способе вывод о технического состояния бытового холодильника выполняется на основании сравнения КРВ и температур в камерах исследуемого холодильного прибора с КРВ и температурами в камерах эталонного холодильного прибора или с показателями заведомо исправного однотипного нового холодильного прибора.

Недостатком способа оценки технического состояния с использованием прибора «СХ-2» является то, что показатель КРВ зависит от температуры окружающего воздуха. Чем выше температура воздуха, окружающего холодильный прибор, тем выше его КРВ при прочих неизменных параметрах. Описанный способ дает ориентировочную оценку технического состояния бытового холодильного прибора и не автоматизирован - измерения и вычисления выполняются специалистом, прибор не предусматривает возможности записи результатов измерений и вычислений КРВ.

Другим методом определения технического состояния бытового холодильного прибора является определение его холодопроизводительности на стендах, имеющих теплоизолированные камеры и калориметр (например, Стенд для испытаний герметичного холодильного агрегата А.с. SU 1315762, опубл. 08.02.87. И.В. Болгов, В.В. Левкин, А.В. Кожемяченко, С.Н. Алехин, С. В. Минаков) /4/. Сущность этого метода заключается в измерении холодопроизводительности работающего холодильного агрегата при постоянных внешних условиях.

Метод определения холодопроизводительности в теплоизолированной камере осуществляется путем ручного регулирования мощности нагревателя калориметра, размещенного в одной теплоизолированной емкости с испарителем исследуемого работающего агрегата. При этом добиваются теплового равновесия (теплового баланса) вырабатываемого холода и компенсирующего тепла. Полученное значение мощности нагревательного элемента при тепловом установленном равновесии характеризует холодопроизводительность агрегата. Такой способ обеспечивает измерение и сравнение фактической холодопроизводительности исследуемого холодильника с ожидаемой, полученной расчетным путем, или с холодопроизводительностью эталонного (образцового) однотипного холодильного прибора. По сходимости или отличию этих показателей оценивается техническое состояние исследуемого бытового холодильного прибора.

Недостатком рассмотренного способа оценки технического состояния бытового холодильника на калориметрических стендах и в теплоизолированной камере является громоздкость стенда, длительность испытаний, ручное управление процессом измерений, снятие показателей по шкальным манометрам, а также то, что измерения имеют относительно высокую погрешность.

Известен также метод определения работоспособности и технического состояния бытового холодильника путем прямого измерения температуры в испарителе в нескольких «точках» (Диагностическая система для бытовых электроприборов. Заявка RU №2005121143, Опубл. 20.01.2006, Бюл. №02) /5/. Сравнивая фактические измерения температуры в испарителе после наступления устоявшегося режима с ожидаемой (на основании опыта), принимают решение о техническом состоянии бытового холодильного прибора.

Недостатком такого способа является то, что температура в испарителе зависит от многих условий эксплуатации и без регламентирования этих условий оценка технического состояния БХП по этому способу будет ориентировочной и требует дополнительных действий для достижения цели по этому способу.

Наиболее близким по технической сущности к заявляемому способу является способ определения технического состояния подсистем бытовых компрессионных холодильников (Способ определения технического состояния подсистем бытовых компрессионных холодильников. Патент RU №2354899, опубл. 10.05.2009. Першин В.А., Кожемяченко А.В., Русляков Д.В., Алехин А.С.) /6/, в котором измеряют диагностические параметры: температуру воздуха и температуру хладона в точках подсистем холодильного агрегата, а значения искомых параметров бытового компрессионного холодильника определяют косвенным путем, путем подстановки результатов прямых измерений параметров в расчетные зависимости, при этом измеряют температуру окружающего воздуха, рассчитывают значение давления или другой температуры хладона в исследуемых подсистемах по соответствующим выражениям инвариантов подобия функционирования холодильного агрегата, сравнивают рассчитанные значения давления или температуры с их соответственными нормативными значениями и делают вывод о соответствии технического состояния подсистем их заданному состоянию.

Для определения технического состояния подсистем бытовых компрессионных холодильников и расчета действительных значений давления хладона или температур используют математические выражения для инвариантов подобия функционирования подсистем холодильного агрегата. Недостатком такого способа определения технического состояния подсистем бытовых компрессионных холодильников является использование метода не полных измерений параметров, характеризующих техническое состояние подсистем БХП, а измерение некоторой части этих параметров и вычисление других параметров на основе инвариантов подобия функционирования, что усложняет получение показателей технического состояния подсистем БХП. При этом уменьшается достоверность показателей технического состояния, так как прямые измерения более достоверны в сравнении с косвенными, получаемыми расчетным путем. Кроме того, такой способ не может быть автоматизирован, так как в этом способе требуется выполнение относительно сложных расчетов на основе анализа полученных результатов. Задачей изобретения является устранение отмеченных недостатков, а именно обеспечение автономности выполнения процесса оценки технического состояния БХП по интегральным показателям, упрощения процесса оценки, повышение достоверности заключения о техническом состоянии БХП. Поставленная задача решается тем, что способ определения технического состояния бытового холодильного прибора, включающий выполнение нормативных условий испытания холодильника в зависимости от его класса и модели, при нормативном значении температуры окружающей среды, заключается в том, что для нормативных условий испытаний перед началом эксплуатации бытового холодильного прибора измеряется (измеряются) одна (или несколько) характеристик, определяющих интегральные показатели технического состояния бытового холодильного прибора, вычисляются показатели технического состояния, которые принимаются за базовые значения, выполняется запись (регистрация) этих показателей, а по истечении нормированного периода эксплуатация выполняются последующие проверочные измерения этих же характеристик и вычисляются эти же показатели, которые сравниваются с базовыми; а по сходимости или расхождению этих показателей оценивается техническое состояние всего холодильного прибора, при этом для записи результатов измерений характеристик, вычисления показателей технического состояния БХП, выполнения операций сравнения и управления подпрограммами по обеспечению нормированных условий измерений используется контроллер системы управления БХП.

В качестве нормированных показателей технического состояния БХП в заявляемом способе могут быть использованы следующие интегральные показатели технического состояния БХП: индекс энергетической эффективности или оценка по среднегодовому энергопотреблению, среднесуточное энергопотребление, коэффициент рабочего времени, скорость заморозки. Возможно применение и других показателей технического состояния БХП, например скорость охлаждения в камерах БХП после размораживании и уборки внутри шкафа, температура на входе и выходе с испарителя и другие показатели технического состояния БХП и его подсистем, которые не являются нормированными, по при измерениях могут быть использованы для оценки технического состояния БХП.

Индекс энергетической эффективности холодильника вычисляется по формуле:

I = E ф а к т E с т а н д 100 % ,

где Eфакт - фактическое годовое потребление электроэнергии холодильным прибором, кВт×ч;

Eстанд - стандартное годовое потребление для холодильного прибора данной категории, определяемое при испытаниях эталонного (нового) холодильника до периода его эксплуатации, или значение годового потребления, которое указывается производителем в паспорте на изделие, кВт×ч.

Фактическое суточное энергопотребление определяется на основе прямых измерений по методике, изложенной в (ГОСТ 30204-95. Эксплуатационные характеристики БХП. Методы испытаний) /3/ при температуре окружающей среды 25°C.

В качестве нормированного показателя интегральной оценки БХП может быть использован коэффициент рабочего времени (КРВ), измеряемый при нормированном значении температуры окружающей среды. Также сравнивается эталонное значение КРВ нового(эталонного) холодильника с КРВ холодильника после нормированного периода его эксплуатации. По расхождению значений эталонного и фактического значений КРВ судят о техническом состоянии БХП.

Сущность изобретения поясняется алгоритмом способа определения технического состояния холодильного прибора, приведенным на Фиг 1.

Описание алгоритма управления процессом определения технического состояния БХП

Первым этапом диагностирования является создание нормативных условий испытания бытового холодильного прибора (БХП). Согласно ГОСТ 16317-87 /2/ и ГОСТ 30204-95 /3/ создаются условия испытания нового изделия - БХП, которые включают поддержание температуры окружающего воздуха 25°C, работу холодильника без, загрузки продуктами или имитаторами продуктов без открывания дверей холодильного шкафа.

При этом интегральными показателями технического состояния БХП являются величина измененного энергопотребления и/или коэффициент рабочего времени. В качестве интегральных показателей технического состояния БХП могут быть использованы другие показатели, например мощность заморозки по ГОСТ 16317-87 /1/ или скорость охлаждения воздуха в камерах.

Вторым этапом является измерение опорных (эталонных) характеристик технического состояния БХП.

Третьим этапом определения технического состояния БХП является запись измеренных значений интегральных и частных показателей и характеристик в энергонезависимую память контроллера системы управления БХП в соответствующие адресные ячейки памяти с возможностью считывания содержания ячеек и выполнения вычислений показателей технического состояния БХП.

Четвертым этапом является включение таймера регламентируемого периода эксплуатации БХП. Таким периодом может быть полгода или год текущего времени или времени работы БХП или число пусков компрессора из расчета этого числа за регламентируемый период эксплуатации.

Период работы БХП до первых контрольных измерений может изменяться в зависимости от прогнозируемой надежности эксплуатируемого холодильника, наличия новых малоизученных элементов, которые увеличивают вероятность измерения технического состояния, что влияет на установление периодичности информирования пользователя о состоянии текущего энергопотребления БХП.

По истечении установленного периода эксплуатации выполняется пятый этап определения технического состояния БХП, который заключается в создании регламентированных условий испытания, аналогичных условиям первого этапа.

Такие условия могут быть созданы принудительно или выполнены в период размораживания и/или уборки в холодильном шкафу. Основным регламентированным условием для проведения следующего этапа является установление регламентированного значения температуры окружающего воздуха. Например, с использованием охлаждающего кондиционера или сплит-системы.

Шестой этап включает контрольные измерения значений соответствующих характеристик и вычисление интегральных показателей технического состояния БХП.

Показатели интегральной оценки технического состояния БХП включают показатели, принятые на втором этапе диагностирования. Такие, как суточное энергопотребление, и/или КРВ, и/или скорость охлаждения, и/или суммирующие показатели, например среднесуточное энергопотребление за период между первичным измерением опорных (эталонных) интегральных показателей, измерением контрольных значений после регламентированного периода работы БХП.

При этом результаты контрольного измерения интегральных характеристик и показателей размещаются в память контроллера системы управления БХП, во вторую группу ячеек, соответственно с размещением значений измерений на третьем этапе.

Седьмой этап включает сравнение интегральных показателей технического состояния БХП, используя записи их значений из первой группы ячеек памяти и второй группы ячеек памяти, соответственно с наименованием оцениваемых параметров.

Восьмой этап заключается в выводе на индикатор результатов измерений базового (эталонного значения) и контрольного значения интегральных характеристик технического состояния БХП.

Девятый этап заключается в принятии решения об оценке технического состояния БХП по интегральным показателям.

При этом отклонение значения каждого контрольного показателя от значения базового (эталонного) сравнивается с допустимыми отклонениями каждого показателя, внесенными в третью ячейку памяти контроллера управления БХП.

Если эти отклонения незначительны и не превышают установленных пределов, принимается решение о продолжении эксплуатации БХП без индикации результатов сравнения, при этом на индикатор могут быть выведены сообщения для пользователя о благополучном техническом состояния БХП.

Десятый этап предусматривает выявление критических отклонений и включения индикации о предаварийном состоянии на панели контроллера БХП. Возможно также дистанционное информирование сервисного центра о критическом состоянии БХП конкретного пользователя.

Техническое состояние БХП определяется интегральным показателем, который выбирается производителем холодильника или специалистом по программированию контроллера системы управления БХП.

В зависимости от выбранного показателя или показателей в контроллер вводятся подпрограммы для измерения определенных характеристик работы БХП и вычисления показателя/показателей технического состояния БХП.

Например, для оценки технического состояния БХП по коэффициенту рабочего времени (КРВ) измеряется время работы компрессора τр и время его стоянки τс за один или несколько установившихся циклов согласно ГОСТ 16317-87 и вычисляется показатель КРВ:

в = τ р τ р + τ с .

При этом выполняются следующие условия измерений.

1. Контролируется температура окружающего воздуха. Преимущественно температура окружающего воздуха должна быть равной 25°C (это условие идентично условиям заводских испытаний).

2. В расчете КРВ используются характеристики только тех циклов, за которые двери холодильного шкафа БХП не открывались, а температура окружающего воздуха не изменялась или изменялась незначительно, не более 3…5 %.

Для оценки технического состояния БХП по среднесуточному или среднегодовому энергопотреблению измеряется фактическая потребляемая мощность за один, несколько установившихся циклов работы компрессора или за длительный срок эксплуатации, от одного месяца до года эксплуатации.

При измерении потребляемой мощности за один или несколько циклов необходимо также контролировать и/или поддерживать за период измерений температуру окружающего воздуха преимущественно 25°C и обеспечивать измерения без открывания холодильного шкафа БХП.

Расчет среднесуточного энергопотребления выполняется на основании результатов измерения потребленной мощности одного или нескольких циклов работы компрессора в установившемся режиме.

Оценка суточного энергопотребления БХП на основании измерений одного цикла в установившемся режиме выполняется следующим образом.

Вычисляется ожидаемое число циклов за сутки:

n ц = 24 τ ц

где τцрс - длительность одного цикла.

Вычисляется среднесуточное энергопотребление:

E с у т = E ц n ц ,

где Eц - замеренная потребляемая мощность за один цикл.

Оценка среднесуточного энергопотребления на основании измерений потребляемой мощности за несколько циклов выполняется по следующим выражениям:

τ ¯ ц = i = 1 n τ ц i n n ц = 24 τ ¯ ц

E ¯ ц = i = 1 n E i n E с у т = E ¯ ц n ц ,

где τ ¯ ц - среднее значение длительности цикла за n циклов работы компрессора;

τцi - значение i-го измерения длительности каждого из n циклов;

nц - число циклов в сутки;

E ¯ ц - среднее значение n измерений i-го энергопотребления Ei за каждый i-й цикл.

Оценка среднесуточного энергопотребления Eсут за более длительный период от 1 мес до 1 года определяется отношением потребленной энергии за этот период к числу суток за этот период. Например:

E с у т = E 30 30 ,

где E30 - потребляемая мощность за 30 дней. Интегральная оценка технического состояния БХП по среднесуточному энергопотреблению позволяет сравнивать вычисленные значения энергопотребления с паспортными значениями энергопотребления БХП и определить соответствие испытываемого холодильника его энергетическому классу в начале эксплуатации и после истечения задаваемого срока эксплуатации (ГОСТ Р 51565-2000. Приборы холодильные электрические. Эффективность энергопотребления. Методы определения.) /7/.

Оценка технического состояния БХП по скорости охлаждения, например, в холодильной камере выполняется путем сравнения скорости охлаждения в начальном (исходном) техническом состоянии БХП со скоростью охлаждения после регламентированного периода эксплуатации для идентичных условий измерения скорости охлаждения.

При этом контроллер управления БХП обеспечивает измерение температур в начале охлаждения, когда температура в камере равна температуре окружающей среды, и на протяжении периода времени τохл, за которое температура понижается до рабочего значения +2…+5C°.Достижение этой температуры является командой для остановки таймера времени работы компрессора. Далее вычисляется разница между температурой окружающей среды tос и температурой в камере tохл, и которая делится на время работы компрессора за этот период

V о х л = t о с t о х л τ о х л

Определение скорости охлаждения осуществляется под управлением подпрограммы контроллера системы управления БХП.

При этом выполняется сравнение температуры окружающего воздуха и температуры внутри исследуемой камеры БХП. Если температуры не равны, измерение не выполняется; если температуры равны, вырабатываются команда на включение компрессора и команда на запуск таймера текущего времени с момента работы компрессора, сигнал с датчика температуры внутри камеры холодильника является командой для остановки таймера текущего времени и начала определения (вычисления) скорости охлаждения.

Подпрограмма определения скорости охлаждения выполняется первично для нового холодильника при температуре окружающего воздуха от 20 до 30°C и через устанавливаемый период эксплуатации преимущественно при температуре окружающей среды, равной температуре окружающей среды при испытании нового холодильника.

При последующих измерениях скорости охлаждения устанавливается такое же значение температуры окружающей среды. Измерение скорости охлаждения выполняется при незагруженных продуктами камерах холодильника.

Такие измерения можно выполнять в периоды размораживания и уборки внутри камер.

Заявленный способ определения технического состояния обладает следующими преимуществами в сравнении с прототипом:

- упрощается процесс определения технического состояния БХП, т.к. не требуется дорогостоящих и громоздких калориметрических стендов;

- не требуется выполнять вычисления характеристик через критерии, а непосредственно измерять эти характеристики, что минимизирует участие человека;

- увеличивается точность и достоверность диагностики, так как исключаются погрешности нелинейностей в критериях подобия, а косвенные вычисления заменяются измерением фактических значений характеристики и показателей;

- способ обладает большей мобильностью, т.к. обеспечивает возможность определять техническое состояние БХП, общее (интегральное) без участия человека и с минимальными требованиями к условиям реализации способа;

- способ может быть использован в системе самодиагностики (преимущественно) и при стационарных испытаниях БХП в ремонтных мастерских, а также при ремонтах «на дому»;

- способ может стать основой выпуска БХП с электронным паспортом, где в заводских условиях при плановых заводских испытаниях в электронной памяти контроллера системы управления БХП будут сохранены интегральные и локальные характеристики нового прибора.

Разработанный способ базируется на результатах многолетних исследований коллектива авторов, частично отраженных в цитируемых источниках.

Источники информации

1. Лепаев Д.А. Ремонт бытовых холодильников. М.: Легпромбытиздат, 1989, с.255-258.

2. ГОСТ 1631787С.19 «Приборы холодильные электрические бытовые. Общие технические условия».

3. ГОСТ 30204-95 Эксплуатационные характеристики БХП. Методы испытаний.

4. Стенд для испытаний герметичного холодильного агрегата. A.c.SU 1315762. Опубл. 08.02.87. Авторы: И.В. Болгов, В.В. Левкин, А.В. Кожемяченко, С.Н. Алехин, С.В. Минаков.

5. Диагностическая система для бытовых электроприборов. Заявка RU №2005121143, опуб. 20.01.2006, бюл. №02.

6. Способ определения технического состояния подсистем бытовых компрессионных холодильников. Патент RU №2354899, опубл. 10.05.2009. Авторы: Першин В.А., Кожемяченко А.В., Русляков Д.В., Алехин А.С.

7. ГОСТ Р 51565-2000. Приборы холодильные электрические. Эффективность энергопотребления. Методы определения.

Похожие патенты RU2525058C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПОДСИСТЕМ КОМПРЕССИОННОГО БЫТОВОГО ХОЛОДИЛЬНОГО ПРИБОРА 2013
  • Кожемяченко Александр Васильевич
  • Лемешко Михаил Александрович
  • Петросов Сергей Петрович
  • Рукасевич Владимир Владимирович
  • Фомин Юрий Григорьевич
RU2526143C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ БЫТОВОГО ХОЛОДИЛЬНОГО ПРИБОРА 2011
  • Лемешко Михаил Александрович
  • Кожемяченко Александр Васильевич
  • Петросов Сергей Петрович
  • Рукасевич Владимир Владимирович
  • Саввов Алексей Вальервич
RU2480686C2
Способ контроля технического состояния компрессорно-конденсаторных агрегатов систем кондиционирования и устройство для его осуществления 2021
  • Сидоров Владимир Анатольевич
  • Карнаух Виктория Викторовна
  • Пундик Михаил Александрович
  • Борисенко Владимир Филиппович
  • Угланов Дмитрий Александрович
  • Сармин Дмитрий Викторович
  • Шиманова Александра Борисовна
RU2795112C1
СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ТЕПЛОЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК МАЛЫХ ХОЛОДИЛЬНЫХ МАШИН 2016
  • Лемешко Михаил Александрович
  • Башняк Сергей Ефимович
  • Кожемяченко Александр Васильевич
  • Урунов Салават Рашидович
  • Романов Павел Витальевич
  • Лемешко Александр Михайлович
RU2658871C2
БЫТОВОЙ ХОЛОДИЛЬНЫЙ ПРИБОР С ПОДВИЖНЫМ КОНДЕНСАТОРОМ 2016
  • Лемешко Михаил Александрович
  • Кожемяченко Александр Васильевич
  • Романов Павел Витальевич
  • Фомин Юрий Григорьевич
  • Никишин Владислав Викторович
RU2626944C1
УСТРОЙСТВО ХОЛОДИЛЬНОГО АГРЕГАТА БЫТОВОГО КОМПРЕССИОННОГО ХОЛОДИЛЬНИКА 1999
  • Бескоровайный А.В.
  • Романович Ж.А.
  • Кожемяченко А.В.
  • Петросов С.П.
RU2162576C2
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПОДСИСТЕМ БЫТОВЫХ КОМПРЕССИОННЫХ ХОЛОДИЛЬНИКОВ 2007
  • Першин Виктор Алексеевич
  • Кожемяченко Александр Васильевич
  • Русляков Дмитрий Викторович
  • Алехин Алексей Сергеевич
RU2354899C2
СПОСОБ ОХЛАЖДЕНИЯ КОНДЕНСАТОРА КОМПРЕССИОННОГО ХОЛОДИЛЬНИКА (ВАРИАНТЫ) 2010
  • Лемешко Михаил Александрович
  • Русляков Дмитрий Викторович
  • Корниенко Филипп Вячеславович
  • Пахнюк Владимир Анатольевич
  • Соколов Дмитрий Вячеславович
  • Лалетин Вячеслав Игоревич
RU2455586C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ КОМПРЕССИОННОЙ ХОЛОДИЛЬНОЙ МАШИНЫ 1999
  • Першин В.А.
  • Левкин В.В.
  • Плякин Р.В.
RU2168681C1
СПОСОБ ОХЛАЖДЕНИЯ ГЕРМЕТИЧНОГО КОМПРЕСОРНО-КОНДЕНСАТОРНОГО АГРЕГАТА КОМПРЕССИОННОГО ХОЛОДИЛЬНОГО ПРИБОРА 2012
  • Лемешко Михаил Александрович
  • Петросов Сергей Петрович
  • Корниенко Филипп Вячеславович
  • Аристархов Владимир Александрович
  • Кривоносов Юрий Павлович
  • Рабичев Евгений Александрович
RU2511804C2

Иллюстрации к изобретению RU 2 525 058 C1

Реферат патента 2014 года СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ КОМПРЕССИОННОГО БЫТОВОГО ХОЛОДИЛЬНОГО ПРИБОРА

Изобретение относится к холодильной технике. Способ определения технического состояния бытового компрессионного холодильного прибора заключается в том, что для нормативных условий испытаний перед началом эксплуатации бытового холодильного прибора измеряются одна или несколько характеристик, определяющих интегральные показатели технического состояния бытового холодильного прибора. Затем вычисляются показатели технического состояния, которые принимаются за базовые значения, выполняется запись (регистрация) этих показателей, а по истечении нормированного периода эксплуатации выполняются последующие проверочные измерения этих же характеристик и вычисляются эти же показатели, которые сравниваются с базовыми. По сходимости или расхождению этих показателей оценивается техническое состояние всего холодильного прибора, при этом для записи результатов измерений характеристик, вычисления показателей технического состояния БХП, выполнения операций сравнения и управления подпрограммами по обеспечению нормированных условий измерений используется контроллер системы управления БХП. Изобретение направлено на обеспечение автономности выполнения процесса оценки технического состояния БХП. 1 ил.

Формула изобретения RU 2 525 058 C1

Способ определения технического состояния бытового компрессионного холодильного прибора, включающий выполнение нормативных условий испытания холодильника в зависимости от его класса и модели, при нормативном значении температуры окружающей среды, отличающийся тем, что для нормативных условий испытаний перед началом эксплуатации бытового холодильного прибора измеряются одна или несколько характеристик, определяющих интегральные показатели технического состояния бытового холодильного прибора, вычисляются показатели технического состояния, которые принимаются за базовые значения, выполняется запись (регистрация) этих показателей, а по истечении нормированного периода эксплуатации выполняются последующие проверочные измерения этих же характеристик и вычисляются эти же показатели, которые сравниваются с базовыми; а по сходимости или расхождению этих показателей оценивается техническое состояние всего холодильного прибора, при этом для записи результатов измерений характеристик, вычисления показателей технического состояния БХП, выполнения операций сравнения и управления подпрограммами по обеспечению нормированных условий измерений используется контроллер системы управления БХП.

Документы, цитированные в отчете о поиске Патент 2014 года RU2525058C1

СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПОДСИСТЕМ БЫТОВЫХ КОМПРЕССИОННЫХ ХОЛОДИЛЬНИКОВ 2007
  • Першин Виктор Алексеевич
  • Кожемяченко Александр Васильевич
  • Русляков Дмитрий Викторович
  • Алехин Алексей Сергеевич
RU2354899C2
Стенд для испытаний герметичного холодильного агрегата 1985
  • Болгов Иван Васильевич
  • Левкин Валерий Вадимович
  • Кожемяченко Александр Васильевич
  • Алехин Сергей Николаевич
  • Минаков Сергей Владимирович
SU1315762A1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ БЫТОВОГО ХОЛОДИЛЬНОГО ПРИБОРА 2011
  • Лемешко Михаил Александрович
  • Кожемяченко Александр Васильевич
  • Петросов Сергей Петрович
  • Рукасевич Владимир Владимирович
  • Саввов Алексей Вальервич
RU2480686C2
JP 0003099227 A, 24.04.1991
US 0007752857 B2, 13.07.2010

RU 2 525 058 C1

Авторы

Кожемяченко Александр Васильевич

Лемешко Михаил Александрович

Петросов Сергей Петрович

Рукасевич Владимир Владимирович

Фомин Юрий Григорьевич

Даты

2014-08-10Публикация

2013-02-21Подача