Изобретение относится к холодильной технике, к холодильникам компрессионного типа, в частности к бытовым холодильным приборам и устройствам охлаждения конденсаторов этих приборов.
Известны холодильники, холодильный цикл которых включает следующие процессы: сжатие хладагента компрессором, передачу тепла от хладагента конденсатору, отвод тепла от конденсатора окружающему воздуху [Вайнберг В.Б., Вайн В.П. Бытовые компрессионные холодильники. М.: Пищевая промышленность, 1974 г., с. 99-101]. При этом конденсатор бытового холодильника передает тепло в окружающий воздух путем теплообмена при естественной конвекции.
Недостатком таких холодильников является необходимость использования относительно большого змеевика конденсатора. Известен конденсатор бытового холодильника с принудительной вентиляцией (обдувом) поверхности конденсатора (Бабакин Б.С., Выгодин В.А. Бытовые холодильники и морозильники, 2000 г., с. 104-105).
Охлаждение конденсатора бытового холодильника обеспечивается движением потока воздуха от вентилятора относительно неподвижного конденсатора. Обдув поверхности конденсатора бытового холодильника потоком воздуха от вентилятора увеличивает интенсивность теплообмена, увеличивает теплоотвод от хладагента. Недостатком такого холодильника с принудительным обдувом конденсатора является то, что поток воздуха от вентилятора лишь частично охватывает поверхность конденсатора, участвуя в теплообменных процессах. Энергия, затрачиваемая вентилятором на создание воздушного потока, частично используется в обеспечении теплообменного процесса на поверхности конденсатора. Этот недостаток минимизирован в бытовом холодильнике с подвижным конденсатором [Патент РФ №2570533 С1 29.12.2014. Бытовой холодильник с подвижным конденсатором]. Холодильник по указанному патенту состоит из холодильного шкафа, герметичного агрегата, компрессора, испарителя и конденсатора, закрепленного консольно в нижней части холодильного шкафа, при этом верхняя часть конденсатора взаимодействует с исполнительным органом электромагнитного вибратора, прикрепленного к корпусу холодильного шкафа. Теплопередача от конденсатора окружающему воздуху интенсифицируется за счет создания дополнительного обдува змеевика конденсатора при его колебательных движениях.
Данное техническое решение принято нами за прототип.
Тепловая нагрузка на конденсатор - переменная величина и в зависимости от фактической температуры окружающего воздуха тепловая нагрузка на конденсатор изменяется. Поэтому при относительно низких температурах окружающего воздуха целесообразность колебательных движений подвижного конденсатора отпадает. Однако в приведенном выше прототипе не учитывается фактическое значение температуры окружающего воздуха и согласно описанию этого прототипа вибратор будет работать и затрачивать электроэнергию и тогда, когда это не нужно, что является недостатком такого технического решения.
Задачей изобретения является устранение указанного недостатка, а именно снижение потребляемой электроэнергии бытовым холодильным прибором в период эксплуатации при изменении температуры окружающего воздуха.
Поставленная задача решается тем, что бытовой холодильник с подвижным конденсатором, состоящий из холодильного шкафа, герметичного агрегата, плоского конденсатора трубчатого типа, закрепленного консольно на задней стенке холодильного шкафа и в нижней части подключенного к герметичному агрегату, электромагнитного вибратора конденсатора с приводом, снабжен узлом сравнения температур: узлом сравнения фактического значения температуры окружающего воздуха с предельным значением температуры окружающего воздуха, которое устанавливается пользователем, при этом выход с узла сравнения температур подключен к цепи включения/выключения привода электромагнитного вибратора так, что при значении фактической температуры окружающего воздуха ниже значения предельной температуры окружающего воздуха привод электромагнитного вибратора отключен, при изменении значения фактической температуры окружающего воздуха выше значения предельной температуры окружающего воздуха привод электромагнитного вибратора включен.
Технический результат заключается в снижении затрат электроэнергии на работу бытового холодильного прибора с подвижным конденсатором в период его эксплуатации; увеличение ресурса привода электромагнитного вибратора и бытового холодильного прибора в целом. Технический результат обеспечивается тем, что при колебаниях температуры окружающего воздуха в помещении, где эксплуатируется бытовой холодильный прибор при низкой тепловой нагрузке на подвижный конденсатор, не будет включаться электромагнитный вибратор подвижного конденсатора и снизятся общие энергозатраты на работу бытового холодильного прибора.
Сущность изобретения поясняется чертежами. На фиг. 1 приведен вид компрессионного бытового холодильного прибора в сечении плоскостью, перпендикулярной плоскости подвижного конденсатора. На фиг. 2 приведена схема примера узла сравнения температур.
Бытовой холодильный прибор с подвижным конденсатором состоит (фиг. 1, фиг 2) из холодильного шкафа 1, герметичного агрегата, в состав которого входит подвижный конденсатор 2, выполненный с возможностью совершать колебательные движения перпендикулярно плоскости задней стенки холодильного шкафа 1, электромагнитного вибратора 3, закрепленного к корпусу холодильного шкафа 1.
Бытовой холодильный прибор с подвижным конденсатором содержит узел сравнения температур. Пример узла сравнения температур представлен как один из вариантов в виде мостовой схемы с релейным выходным механизмом, соединенным с выключателем питания электромагнитного вибратора 3 (фиг. 2).
Узел сравнения температур 4, в приведенном примере, содержит мостовую схему соединения резисторов, два из которых - пассивные, два других резистора активны. В узле сравнения температур 4, в одно из активных плечей моста, включен регулируемый резистор 8, сопротивление которого Rу соответствует устанавливаемой температуре окружающего воздуха tуc, в качестве опорной температуры; в другое активное плечо моста включен датчик температуры окружающего воздуха 7, сопротивление которого Rд пропорционально фактической температуре окружающего воздуха tов ф. С выхода моста (фиг. 2) между точками «a» и «b» формируется напряжение, пропорциональное разности значений устанавливаемой температуры окружающего воздуха и фактически измеренной температуры окружающего воздуха Δtов=tус-tов ф. Если эта разность отрицательна или равна нулю, принимается режим невключения вибратора конденсатора. Тогда электромеханическое реле 6 не срабатывает, цепь включения электромеханического вибратора 3 не коммутируется. Если разность напряжений положительна, включается электромеханическое реле 6, которое коммутирует контакт 5 цепи питания генератора колебаний 9 электромагнитного вибратора 3.
Работает заявляемый бытовой холодильный прибор с подвижным конденсатором следующим образом (фиг. 2). При включении бытового холодильного прибора подается напряжение на компрессор, а также на электромагнитный вибратор 3 через генератор колебаний 9 и контакт 5 электромеханическое реле 6, узла сравнения температур 4. По умолчанию, в исходном положении, цепь питания электромеханического вибратора 3 не коммутируется, контакт 5 - разомкнут.Частота колебаний электромеханического вибратора 3 устанавливается на генераторе колебаний 9 в соответствие с типом конденсатора бытового холодильного прибора, классом бытового холодильного прибора и объемом камер охлаждения, в начале его эксплуатации. По результатам измерения фактической температуры окружающего воздуха tов ф определяется режим работы агрегата БХП. Если температура окружающего воздуха tов ф меньше установленного значения температуры tуc на резисторе 8, градуированном в градусах, то узел сравнения температур 4 не вырабатывает команду на включение электромагнитного вибратора. Электромагнитный вибратор не включается. Конденсатор 2 БХП охлаждается естественной конвекцией.
Если температура окружающего воздуха tов ф изменится на повышение и станет больше, чем температура tус, установленная на узле сравнения температур, или с начала работы холодильного агрегата фактическая температура окружающего воздуха tов ф будет больше, чем температура tyc, установленная на узле сравнения температур 4, то на выходе из узла сравнения температур между точками «a» и «b» сформируется положительное значение напряжения, что приведет к срабатыванию электромеханического реле 6 на коммутацию контакт 5 цепи питания генератора колебаний 9 и соответственно электромагнитный вибратор 3. Электромагнитный вибратор 3 будет включен, конденсатор начнет совершать колебательные движения, увеличивается теплообмен между поверхностью конденсатора и окружающим воздухом и охлаждение конденсатора 2 БХП будет более интенсивное.
При подаче напряжения на катушку электромагнитного вибратора 3, закрепленного на поверхности корпуса холодильного шкафа 1, его магнитное поле будет вызывать колебательные движения верхней части плоскости конденсатора 2. При этом образующиеся турбулентные завихрения воздуха окружающей среды будут интенсивно взаимодействовать с поверхностью змеевика и элементов оребрения конденсатора 2, обеспечивая этим интенсивный теплообмен между хладагентом и окружающим воздухом. Интенсификация охлаждения конденсатора 2 снижает давление в системе конденсации и на выходном патрубке из компрессора. Снижается общая нагрузка на компрессор и уменьшается удельное энергопотребление холодильника. При этом затраты энергии на улучшение теплообмена конденсатора с окружающим воздухом уменьшаются. При относительно низкой температуре окружающего воздуха температура конденсации хладагента уменьшается и интенсификация охлаждения конденсатора бесполезна, поэтому в этом случае работа электромагнитного вибратора нецелесообразна, так как будет дополнительно затрачена энергия на привод электромагнитного вибратора без улучшения работы холодильного агрегата.
Реализация заявляемого бытового холодильного прибора обеспечит повышение его энергетической эффективности при пониженных температурах окружающего воздуха и обеспечит существенную экономию потребляемой электроэнергии при переменных значениях температуры в помещении, в котором эксплуатируется БХП. Повышение эффективности процесса охлаждения конденсатора БХП создает предпосылки для уменьшения длины змеевика трубчатого конденсатора, тем самым обеспечивается возможность снижения себестоимости бытового холодильного прибора.
название | год | авторы | номер документа |
---|---|---|---|
БЫТОВОЙ ХОЛОДИЛЬНИК С ПОДВИЖНЫМ КОНДЕНСАТОРОМ | 2014 |
|
RU2570533C1 |
БЫТОВОЙ КОМПРЕССИОННЫЙ ХОЛОДИЛЬНИК | 2003 |
|
RU2234645C1 |
УСТРОЙСТВО ХОЛОДИЛЬНОГО АГРЕГАТА БЫТОВОГО КОМПРЕССИОННОГО ХОЛОДИЛЬНИКА | 1999 |
|
RU2162576C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПОДСИСТЕМ КОМПРЕССИОННОГО БЫТОВОГО ХОЛОДИЛЬНОГО ПРИБОРА | 2013 |
|
RU2526143C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ БЫТОВОГО ХОЛОДИЛЬНОГО ПРИБОРА | 2011 |
|
RU2480686C2 |
Способ контроля технического состояния компрессорно-конденсаторных агрегатов систем кондиционирования и устройство для его осуществления | 2021 |
|
RU2795112C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ КОМПРЕССИОННОГО БЫТОВОГО ХОЛОДИЛЬНОГО ПРИБОРА | 2013 |
|
RU2525058C1 |
СПОСОБ ОХЛАЖДЕНИЯ КОНДЕНСАТОРА КОМПРЕССИОННОГО ХОЛОДИЛЬНИКА (ВАРИАНТЫ) | 2010 |
|
RU2455586C1 |
СПОСОБ ОХЛАЖДЕНИЯ КОНДЕНСАТОРА КОМПРЕССИОННОГО ХОЛОДИЛЬНИКА | 2013 |
|
RU2521424C1 |
СПОСОБ ОХЛАЖДЕНИЯ ГЕРМЕТИЧНОГО КОМПРЕСОРНО-КОНДЕНСАТОРНОГО АГРЕГАТА КОМПРЕССИОННОГО ХОЛОДИЛЬНОГО ПРИБОРА | 2012 |
|
RU2511804C2 |
Изобретение относится к холодильной технике. Бытовой холодильный прибор с подвижным конденсатором содержит холодильный шкаф, герметичный агрегат, плоский конденсатор трубчатого типа, который включает соединительные трубопроводы, компрессор, испаритель и конденсатор в виде оребренного трубчатого змеевика, закрепленного консольно на задней стенке холодильного шкафа. Верхняя часть конденсатора взаимодействует с исполнительным органом электромагнитного вибратора, прикрепленного к корпусу холодильного шкафа. Бытовой холодильный прибор снабжен элементом сравнения фактической температуры окружающего воздуха с регламентированным ее значением, а по результатам сравнения включается или отключается вибратор. Техническим результатом является снижение затрачиваемой мощности на электромагнитный вибратор и снижение удельного энергопотребления холодильного прибора. 2 ил.
Бытовой холодильный прибор с подвижным конденсатором, состоящий из холодильного шкафа, герметичного агрегата, плоского конденсатора трубчатого типа, закрепленного консольно на задней стенке холодильного шкафа, а в нижней части подключенного к герметичному агрегату, электромагнитного вибратора конденсатора с приводом, отличающийся тем, что бытовой холодильный прибор с подвижным конденсатором снабжен узлом сравнения температур - узлом сравнения фактического значения температуры окружающего воздуха с предельным значением температуры окружающего воздуха, устанавливаемым пользователем, при этом выход узла сравнения температур подключен к цепи включения/выключения привода вибратора так, что при значении фактической температуры окружающего воздуха ниже значения предельной температуры окружающего воздуха привод вибратора отключен; при изменении значения фактической температуры окружающего воздуха выше значения предельной температуры окружающего воздуха привод вибратора включен.
БЫТОВОЙ ХОЛОДИЛЬНИК С ПОДВИЖНЫМ КОНДЕНСАТОРОМ | 2014 |
|
RU2570533C1 |
Установка для управления и регулирования бытовым холодильным устройством | 1987 |
|
SU1665204A1 |
Горизонтальный ветряный двигатель | 1926 |
|
SU5186A1 |
ХОЛОДИЛЬНИК (ВАРИАНТЫ), СПОСОБ ОХЛАЖДЕНИЯ И ПОДДЕРЖАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В КАМЕРЕ ХОЛОДИЛЬНИКА, СПОСОБ УПРАВЛЕНИЯ РАБОТОЙ ХОЛОДИЛЬНИКА (ВАРИАНТЫ) | 2003 |
|
RU2255273C1 |
Авторы
Даты
2017-08-02—Публикация
2016-12-13—Подача