ПУЛЬСИРУЮЩАЯ ДЕТОНАЦИОННАЯ УСТАНОВКА ДЛЯ СОЗДАНИЯ СИЛЫ ТЯГИ Российский патент 2014 года по МПК F02K7/04 F23R7/00 

Описание патента на изобретение RU2526613C1

Изобретение относится к двигателестроению и может быть использовано для создания тяги на летательных аппаратах, на других транспортных средства и в энергетических установках.

Известен способ работы и устройство энергосиловой детонационной установки [1], состоящей из полузакрытой цилиндрической камеры, к которой крепится под наклоном (0≤α≤90) к продольной осевой линии один или несколько (по периметру) детонационных пакетов, направленных своим открытым торцом в сторону днища. Детонационные пакеты оснащены системой подачи топлива и воспламенения.

Недостатком устройства является то, что детонационные волны, попадая в канал системы для порционной подачи топливной смеси (канал детонационного пакета), повышают теплонапряженность деталей, что приводит к перегреву установки и быстрому выходу ее из строя.

Известна комбинированная камера пульсирующего двигателя детонационного горения [2], состоящая из полости, выполненной в центральном теле камеры сгорания, установленном в корпусе с насадкой с образованием кольцевого канала, и узла подвода продуктов газогенерации. Камера снабжена устройством для создания ударных волн, выполненным в виде струйного ускорителя и соосно с ним расположенного твердого обтекаемого тела, закрепленного в насадке и имеющего осевую и угловую степень свободы.

Данной конструкции присущ недостаток, состоящий в том, что изменение тяги происходит путем перемещения твердого обтекаемого тела, что ухудшает приемистость камеры и делает управление режимом ее работы инерционным.

Известна регулируемая камера пульсирующего двигателя с детонационным горением [3] (пульсирующая детонационная установка для создания силы тяги), содержащая корпус, внутри которого установлен насадок с полузамкнутой камерой (детонационной камерой), и узел подвода газовой смеси (система подачи окислителя). Насадок выполнен составным из подпружиненных телескопических перевернутых стаканов с возможностью возвратно-поступательного перемещения вдоль продольной оси. Узел подвода газовой смеси выполнен в виде газораспределителя с подвижным золотником, соединенным с кольцевыми зазорами. Под действием пружины все телескопические стаканы поджаты торцами друг к другу, в результате чего каналы и соответствующие им проточные части перекрыты. В этом положении детонационная камера имеет максимальный объем. Перед запуском установку необходимо настроить на заданный режим путем перемещения золотника в одно из фиксированных положений, соответствующих числу подвижных стаканов. Стакан под действием давления газов перемещается до упора в насадок, поджимая пружину, в результате чего между донной поверхностью переместившегося и последующего стаканов образуется кольцевая щель для подвода газа в детонационную камеру. Объем детонационной камеры регулируется количеством перемещенных телескопических стаканов. Для изменения режима работы двигателя необходимо одновременно изменить количество компонентов, поступающих в газогенератор, и установить подвижной золотник в соответствующее данному режиму положение. Данное техническое решение, являющееся наиболее близким по существу к заявляемому, и принято за прототип.

Недостатком указанного технического решения является сложность конструкции, наличие движущихся деталей (стаканы, золотник), которые постоянно подвергаются сильным динамическим уларам, и невозможность получения дозированной силы тяги.

Задачей предлагаемого технического решения является упрощение конструкции установки, возможность осуществления требуемого количество единичных циклов с заданной частотой, а также возможность регулирования величины силы тяги в широком диапазоне ее значений.

Задача решается следующим образом.

Известная пульсирующая детонационная установка для создания силы тяги содержит корпус, внутри которого установлен насадок с полузамкнутой детонационной камерой, и систему подачи окислителя.

Согласно предлагаемому техническому решению детонационная камера насадка выполнена в виде полусферы постоянного объема, что обеспечивает существенное упрощение конструкции установки и долговечность ее деталей. В стенках камеры соосно друг другу установлены форсунка для впрыска топлива и свеча зажигания для воспламенения горючей смеси. Между детонационной камерой и насадком расположено профилированное кольцевое сопло, выполненное в виде кольцевой щели с чередующимися пазами, расположенными под острым углом к продольной оси установки, направленными внутрь детонационной камеры и связанными с системой подачи окислителя в детонационную камеру. Такое выполнение кольцевого сопла обеспечивает увеличение скорости истечения газового потока (окислителя) и создание мощных ударных волн, которые фокусируются в определенной точке детонационной камеры и инициируют детонацию в горючей смеси.

Таким образом, работа установки обеспечивается простыми средствами в виде полусферической детонационной камеры постоянного объема, форсунки и свечи зажигания, а также определенной установки кольцевого сопла предлагаемой конструкции. Это упрощает конструкцию самой установки и обеспечивает возможность осуществления требуемого количества единичных циклов с заданной частотой и возможность регулирования величины силы тяги в широком диапазоне ее значений.

На схеме представлен общий вид заявляемой пульсирующей детонационной установки для создания силы тяги.

Установка содержит корпус 1, внутри которого расположены детонационная камера 2, выполненная в виде полусферы постоянного объема, и насадок 3 расположенный соосно с ней, являющийся ее продолжением. Между камерой 1 и насадком 3 установлено профилированное кольцевое сопло 4, представляющее собой кольцевую щель с чередующимися пазами, расположенными под острым углом к продольной оси установки и направленными внутрь детонационной камеры 2, которые связывают полость детонационной камеры 2 с системой подачи окислителя (не показана). Чередующиеся пазы кольцевой щели могут быть также расположены под прямым углом к продольной оси установки. В стенках детонационной камеры 2 на некотором расстоянии от кольцевого сопла 4 установлены соосно друг другу форсунка 5 для подачи жидкого (газообразного) топлива и свеча зажигания 6 для воспламенения горючей смеси. Форсунка 5 и свеча зажигания 6 могут быть также смещены относительно друг друга.

Работа предлагаемой детонационной установки имеет цикличный характер и осуществляется следующим образом. Окислитель (воздух, кислород) под давлением поступает из системы подачи окислителя (не показан) в детонационную камеру 2 через кольцевое сопло 4. Благодаря истечению газовой струи из кольцевого сопла 4 со сверхзвуковой скоростью образуются ударные волны, которые при взаимодействии с поверхностью детонационной камеры 2 усиливаются. Одновременно форсунка 5 впрыскивает определенную порцию жидкого (газообразного) топлива, которое, смешиваясь с окислителем и остаточными газами предыдущего цикла, образует горючую смесь заданного стехиометрического состава. Воспламенение горючей смеси происходит от свечи зажигания 6 в момент полного заполнения детонационной камеры 2. Детонация инициируется при встрече зародившегося в результате воспламенения искрой очага горения с ударными волнами, возникающими при истечении окислителя из кольцевого сопла 4. Формирующаяся детонационная волна, попадая на заднюю поверхность (тяговую стенку) детонационной камеры 2, создает силу тяги. При этом происходит резкое повышение давления в полости детонационной камеры 2, вследствие чего кольцевое сопло 4 перекрывается и подача окислителя прекращается (первый цикл закончен). После прохождения детонационной волны и истечения продуктов детонации наружу давление в детонационной камере 2 резко падает, что приводит к возобновлению поступления окислителя, и цикл повторяется.

Требуемый состав топливно-воздушной смеси достигается изменением количества поступающих в детонационную камеру 2 топлива и окислителя с помощью форсунки 5 и системы подачи окислителя.

Изменяя состав горючей смеси (топлива и окислитель), частоту впрысков топлива через форсунку 5 и длительность каждого впрыска, можно регулировать силу тяги детонационной установки в широких пределах. Положительный эффект предлагаемой пульсирующей детонационной установки для получения тяги подтвержден экспериментально. Например, в модели пульсирующей установки с детонационной камерой диаметра D=40 мм и насадком длины L=65 мм, в которой сжигалась смесь гептана с кислородом и воздухом, сила тяги менялась в пределах R=10-70 H. При этом были использованы автомобильные форсунка и свеча зажигания фирмы Bosh, которые позволяли плавно изменять коэффициент избытка горючего смеси в пределах ϕ=1-4, частоту циклов - в пределах ν=1-1000 Гц.

После первых нескольких циклов рабочий процесс установки становится стационарным и дальнейшее воспламенение смеси и инициирование детонации происходит за счет создаваемых при истечении газообразного окислителя через кольцевое сопло 4 ударных волн и их взаимодействия с факелом топлива, стенкой детонационной камеры и остаточными продуктами сгорания предыдущего цикла, а также благодаря возрастанию температуры. Это означает, что принудительный поджиг топливно-воздушной смеси свечой используется только для запуска детонационного процесса при продолжительной работе установки (более 5 циклов), а также в тех случаях, когда требуется произвести требуемое количество (один и более) дозированных импульсов.

Таким образом, предлагаемое техническое решение обеспечивает простыми средствами пульсирующий режим детонационного горения, который определяется скоростью срабатывания форсунки и свечи зажигания, а также предлагаемая установка позволяет осуществлять требуемое количество единичных циклов (один и более) с заданной частотой и регулировать величину силы тяги в широком диапазоне ее значений.

Источники информации

1. Патент РФ №2285142, МПК F02K 7/02, 2006.

2. Патент РФ №2080466, МПК F02K 7/02, 1997.

3. Патент РФ №2059857, МПК F02K 7/02, 1996.

Похожие патенты RU2526613C1

название год авторы номер документа
СПОСОБ ФУНКЦИОНИРОВАНИЯ ПУЛЬСИРУЮЩЕГО ДЕТОНАЦИОННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) 2010
  • Шмелев Владимир Михайлович
  • Фролов Сергей Михайлович
RU2446306C1
Универсальный реактивный двигатель (УРД) 2019
  • Решетников Михаил Иванович
RU2754976C2
ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ НА ТВЕРДОМ ТОПЛИВЕ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ 2021
  • Фролов Сергей Михайлович
  • Иванов Владислав Сергеевич
  • Фролов Фёдор Сергеевич
  • Авдеев Константин Алексеевич
  • Шиплюк Александр Николаевич
  • Звегинцев Валерий Иванович
  • Наливайченко Денис Геннадьевич
  • Внучков Дмитрий Александрович
RU2796043C2
СПОСОБ РАБОТЫ ИМПУЛЬСНО-ДЕТОНАЦИОННОГО ДВИГАТЕЛЯ В ПОЛЕ ЦЕНТРОБЕЖНЫХ СИЛ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ В РЕАКТИВНОМ ВЕРТОЛЁТЕ 2018
  • Фролов Сергей Михайлович
  • Лазарев Геннадий Григорьевич
  • Набатников Сергей Александрович
  • Шамшин Игорь Олегович
  • Авдеев Константин Алексеевич
  • Аксёнов Виктор Серафимович
  • Иванов Владислав Сергеевич
RU2718726C1
Стендовый жидкостный ракетный двигатель с непрерывной спиновой детонацией 2017
  • Чванов Владимир Константинович
  • Левочкин Петр Сергеевич
  • Ромасенко Евгений Николаевич
  • Иванов Николай Геннадьевич
  • Белов Евгений Алексеевич
  • Дубовик Дина Ивановна
  • Зайцева Галина Александровна
  • Быков Александр Владимирович
  • Стернин Леонид Евгеньевич
  • Старков Владимир Кириллович
  • Ждан Сергей Андреевич
  • Быковский Федор Афанасьевич
RU2674117C1
УСТРОЙСТВО И СПОСОБ УПРАВЛЕНИЯ УСТАНОВКОЙ ВНУТРЕННЕГО СГОРАНИЯ С ПОВЫШЕНИЕМ ДАВЛЕНИЯ 2012
  • Фаршиан Сохил
RU2594845C2
ПУЛЬСИРУЮЩИЙ ДЕТОНАЦИОННЫЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ 2020
  • Бормотов Андрей Геннадьевич
RU2752817C1
ДЕТОНАЦИОННЫЙ ПУЛЬСИРУЮЩИЙ ВОДНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ (ДПВРД) И ДЕТОНАЦИОННЫЙ ВОДОМЁТ КРИШТОПА (ДВК), И СПОСОБ ФУНКЦИОНИРОВАНИЯ ДПВРД И ДВК (ВАРИАНТЫ) 2022
  • Криштоп Анатолий Михайлович
RU2781310C1
СПОСОБ ПОЛУЧЕНИЯ ТЯГИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Малышев В.В.
  • Анакин А.Т.
  • Игнатов А.И.
  • Деменко Д.Г.
  • Попов Ю.Н.
  • Гриценко Е.А.
  • Игначков С.М.
  • Чистяков В.А.
  • Горелов Г.М.
  • Михайлов С.В.
RU2179254C2
Способ приведения во вращение ротора с помощью реактивного двигателя 2021
  • Бормотов Андрей Геннадьевич
  • Плешков Дмитрий Васильевич
  • Шишов Александр Валерьевич
RU2762982C1

Иллюстрации к изобретению RU 2 526 613 C1

Реферат патента 2014 года ПУЛЬСИРУЮЩАЯ ДЕТОНАЦИОННАЯ УСТАНОВКА ДЛЯ СОЗДАНИЯ СИЛЫ ТЯГИ

Пульсирующая детонационная установка для создания силы тяги содержит корпус, внутри которого установлен насадок с полузамкнутой детонационной камерой, систему подачи окислителя. Детонационная камера выполнена в виде полусферы постоянного объема, в стенках которой соосно друг другу установлены форсунка для впрыска жидкого топлива и свеча зажигания для воспламенения горючей смеси. Между детонационной камерой и насадком расположено профилированное кольцевое сопло, выполненное в виде кольцевой щели с чередующимися пазами, расположенными под острым углом к продольной оси установки, направленными внутрь детонационной камеры и связанными с системой подачи окислителя в детонационную камеру. Изобретение направлено на упрощение конструкции установки расширение диапазонов работы. 1 ил.

Формула изобретения RU 2 526 613 C1

Пульсирующая детонационная установка для создания силы тяги, содержащая корпус, внутри которого установлен насадок с полузамкнутой детонационной камерой, систему подачи окислителя, отличающаяся тем, что детонационная камера выполнена в виде полусферы постоянного объема, в стенках которой соосно друг другу установлены форсунка для впрыска жидкого топлива и свеча зажигания для воспламенения горючей смеси, а между детонационной камерой и насадком расположено профилированное кольцевое сопло, выполненное в виде кольцевой щели с чередующимися пазами, расположенными под острым углом к продольной оси установки, направленными внутрь детонационной камеры и связанными с системой подачи окислителя в детонационную камеру.

Документы, цитированные в отчете о поиске Патент 2014 года RU2526613C1

ИМПУЛЬСНЫЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ 2010
  • Загарских Владимир Ильич
  • Волков Андрей Валерьевич
  • Кузин Евгений Николаевич
  • Петрухин Николай Васильевич
RU2433293C2
ПУЛЬСИРУЮЩИЙ ДВИГАТЕЛЬ ДЕТОНАЦИОННОГО ГОРЕНИЯ 2004
  • Ольховский Эдуард Васильевич
RU2282044C1
СПОСОБ ДЕТОНАЦИОННОГО СЖИГАНИЯ ГОРЮЧИХ СМЕСЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Быковский Федор Афанасьевич
  • Ждан Сергей Андреевич
  • Ведерников Евгений Федорович
RU2459150C2
RU 2059857 С1, 10.05.1996
US 3823554 A, 16.07.1974
GB 1001645 A, 18.05.1965

RU 2 526 613 C1

Авторы

Ассад Мохамад Сабетович

Даты

2014-08-27Публикация

2013-02-27Подача