ТВЕРДОТЕЛЬНЫЙ ГИРОЛАЗЕР С УПРАВЛЯЕМОЙ ОПТИЧЕСКОЙ НАКАЧКОЙ Российский патент 2014 года по МПК G01C19/66 

Описание патента на изобретение RU2526893C2

Область изобретения относится к твердотельным гиролазерам, используемым для производства инерционных систем, необходимых для навигации определенных типов транспортных средств, таких как самолеты. Гиролазеры представляют собой оптические вращающиеся датчики, работающие на основе эффекта Саньяка. Эффект Саньяка, который хорошо известен специалистам в данной области техники, к которому относится изобретение, не будет здесь подробно описан. Просто напомним, что, когда две вращающиеся в противоположные стороны оптические моды циркулируют в кольцевом лазере, имеющем вращательное движение, происходит сдвиг их оптических частот, представляющий скорость вращения.

В настоящее время в коммерчески доступных гиролазерах используют газообразную смесь гелия и неона в качестве усилительной среды. Такая технология, которая трудна для воплощения, имеет определенные недостатки. Кроме того, в настоящее время рассматривается замена газообразной усилительной среды твердотельной усилительной средой, такой как, например, "кристалл алюмо-иттриевого граната с неодимом" (ND-YAG) с накачкой от лазерных диодов. Возможность воплощения таких гиролазеров была успешно продемонстрирована. В этом отношении можно сделать ссылку на публикации S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect and J.P. Pocholle in Physics Review Letters 97, 093902 (2006) и S. Schwartz, G. Feugnet, E. Lariontsev and J.P. Pocholle in Physics Review A 76, 023807 (2007). Инерционные характеристики таких устройств улучшаются, когда их частотный отклик становится более линейным, то есть сигнал биений между двумя вращающимися в противоположные стороны модами, частоты которых пропорциональны скорости вращения узла, получают в рабочем диапазоне, который настолько широк, насколько это возможно.

Первый источник нелинейности частотного отклика в твердотельных лазерах связан с присутствием системы инверсии заселенности в усилительной среде, индуцируемой стимулируемой эмиссией. В представленных выше ссылочных документах установлено, что отклонение Δf от идеального частотного отклика из-за этой системы усиления задается следующими уравнениями (А):

при

где γ представляет скорость потери интенсивности за единицу времени;

η представляет собой относительную избыточность накачки, выше порогового значения накачки;

T1 представляет время отклика инверсии заселенности;

А представляет область, записанную в лазерном резонаторе;

λ представляет собой длину волны излучения лазера;

L представляет собой длину резонатора;

θ ˙ представляет собой скорость вращения гиролазера.

Перевод усилительной среды в продольную вибрацию позволяет в значительной степени исключить влияние системы инверсии заселенности, описанной выше. Дополнительная информация о такой технологии доступна в патенте FR 0607394, выданном 26 сентября 2008 г. Тем не менее стабильность скорости η накачки остается важным критерием рабочей характеристики твердотельных гиролазеров.

Другое явление, которое способно ухудшить инерционные характеристики, связано с параметрическими резонансами, которые могут возникать в гиролазере, которые относятся к комбинированному влиянию инерции усилительной среды и возбуждению лазера на частоте биений, когда последний вращается. Этот факт хорошо известен и описан, например, в книге A. Siegman под названием Lasers, University Science Books, Mill Valley, CA (1986), состоящий в том, что некоторые лазеры, называемые лазерами класса В, для которых время отклика инверсии заселенности очень велико по сравнению с другими характеристическими временами, которые представляют собой время существования когерентностей и характерное время затухания резонатора, проявляют явление резонансного отклика вокруг определенной характеристичной частоты, называемой частотой релаксации и обозначаемой как ωr/2π в остальной части описания. Когда скорость вращения твердотельного гиролазера такова, что частота биений равна или очень близка к частоте релаксации, интенсивности мод, излучаемых лазером, становятся чрезвычайно нестабильными, что не позволяет наблюдать биения и поэтому сильно уменьшает общую инерционную характеристику. В частности, твердотельный гиролазер с диодной накачкой, с использованием усилительной среды ND-YAG представляет собой лазер класса В и поэтому он подвержен этому явлению.

Гиролазер в соответствии с изобретением имеет, по меньшей мере, один контур обратной связи, который ограничивает или устраняет большую часть этих проблем.

Более точно, объект изобретения представляет собой гиролазер, содержащий, по меньшей мере, один кольцеобразный оптический резонатор, содержащий, по меньшей мере, три зеркала, твердотельную усилительную среду с накачкой от лазерного диода, мощность оптической эмиссии которого определяется источником питания тока, резонатор и усилительная среда выполнены таким образом, что две так называемые противоположно вращающиеся оптические моды, распространяются в противоположных направлениях друг к другу в упомянутом оптическом резонаторе, гиролазер представляет собой гиролазер класса В, гиролазер также содержит средство измерения различий оптической частоты, присутствующих между двумя оптическими модами, характеризуемой тем, что гиролазер содержит средство измерения общей оптической мощности, циркулирующей в оптическом резонаторе, и первые средства управления током, подаваемым от источника питания, таким образом, чтобы поддерживать, по существу, постоянную общую оптическую мощность.

Предпочтительно первые средства управления оптимизированы для работы с первой полосой частот, по существу с центром на частоте релаксации лазера и с шириной 1/(4πT1), где T1 представляет собой время отклика инверсии заселенности в усилительной среде.

Предпочтительно гиролазер содержит второе средство управления током, подаваемым источником питания, оптимизированное для работы на второй полосе частот, нижний предел которой соответствует низким частотам, близким к постоянному току, и верхний предел которой соответствует частоте релаксации.

Предпочтительно первые средства управления периодически отключают таким образом, что это обеспечивает возможность колебаний оптической мощности на частоте релаксации лазера, причем гиролазер содержит средство измерения упомянутой частоты, средство расчета эффективной скорости накачки по результатам измерения упомянутой частоты и средство регулирования параметров второго средства управления, как функции упомянутой скорости накачки.

Изобретение будет более понятно, и другие преимущества будут видны при чтении следующего описания, которое не представляет собой ограничение, и со ссылкой на приложенный чертеж, на котором представлена блок-схема гиролазера в соответствии с изобретением.

Предпочтительно перед описанием варианта выполнения гиролазера напомнить функции лазера класса В. В контексте упрощенной модели лазер класса В может быть описан двумя реальными параметрами Е и N, соответственно представляющими электрическое поле внутри резонатора и инверсию заселенности или усиление лазера. Эти два параметра подчиняются следующим полуобычным дифференциальным уравнениям (В):

и

где σ представляет собой эффективное поперечное сечение излучения лазера;

l представляет эффективную длину усилительной среды;

Т представляет время, требуемое для фотона, чтобы пролететь через резонатор;

W представляет скорость оптической накачки;

при этом

и а представляет параметр насыщенности.

Таким образом и кроме того, если ввести время существования когерентностей Т2, условия (С) для получения лазера класса В могут быть записаны как:

T1>>T2 и T1>>γ-1

В качестве неограничительного примера для твердотельного кольцевого лазера, резонатор которого имеет периметр 30 сантиметров и проявляет скорость потери 2% на оборот, что соответствует γ, равной 2,107·c-l, и усилительная среда которого представляет собой Nd-YAaG кристалл, где T1=230 мкс и Т2=10-11 с, неравенства (С) корректно удовлетворяются, и этот лазер, следовательно, представляет собой лазер класса В.

Пара статических решений уравнений (В), соответствующих эмиссии лазера, выше порогового значения, задана выражениями (D):

и

Если применяют синусоидальное возмущение, начиная с этого статического состояния, например, используя член источника такого типа, как fcosωt в первом уравнении системы (В), и предполагая, что возмущение очень мало относительно других членов в этом уравнении, становится возможным записать новое решение уравнений лазера как сумму статического решения (D) и члена коррекции, который очень мал по сравнению со статическим решением и изменяется синусоидально с угловой частотой ω. При этом получают пару уравнений (Е):

N=Nst+ncos(ωt+φ) и Е=Еst+ecos(ωt+φ′)

Близко к резонансу и в пределах малых скоростей накачки получают уравнение (F), которое относится к синусоидальному возмущению е, индуцированному электрическим полем лазера Е, и силе f синусоидального возбуждения:

где

Уравнение (F) представляет, что система лазера реагирует резонансным образом на синусоидальное возбуждение, причем максимальную чувствительность получают в непосредственной близости к частоте релаксации ωr/2π. Типичная ширина такого отклика, кроме того, задана выражением 1/2T1, где T1 представляет собой инверсное значение срока жизни инверсии заселенности. Используя заданные ранее типичные значения и η=0,2, ωr/2π≈21 кГц, получают для ширины резонанса значение порядка 350 Гц.

Система поэтому предпочтительно реагирует на возмущения, расположенные в узкой полосе частот, с центром на частоте релаксации лазера. Последний, поэтому, особенно чувствителен к возмущениям, возникающим в этой полосе частот. Такое возмущение может, например, происходить из-за механических вибраций, поступающих снаружи устройства. Они также в случае гиролазера могут происходить изнутри лазера под действием эффекта вращения. Фактически, разность частот между двумя вращающимися в противоположных направлениях модами задана, как первая аппроксимация, следующей формулой (G):

Параметрический резонанс, позволяющий дестабилизировать лазер и поэтому вносящий возмущения в измерения вращения, возникает, когда Ω≈ωr, что соответствует θ ˙ θ ˙ c r , критическая скорость вращения θ ˙ c r задана следующей формулой (Н): θ ˙ c r = λ L ω r 8 π A

При заданных ранее параметрах и предполагая лазер, квадратный резонатор которого имеет периметр 30 сантиметров, который излучает на длине волны 1,06 мкм, получают следующее значение: θ ˙ c r = 17 г р а д / с .

Аналогично Δ θ ˙ c r = 0,3 г р а д / с было получено по ширине резонансного пика, рассчитанной выше. Такой диапазон отсутствия биений поэтому соответствует дополнительной "слепой зоне", составляющей несколько десяткой градусов в секунду и расположенной внутри рабочей зоны гиролазера, что обязательно индуцирует значительную деградацию инерционных характеристик.

Для коррекции этой проблемы гиролазер в соответствии с изобретением содержит, по меньшей мере, первый контур обратной связи, который воздействует на подачу тока лазерного диода оптической накачки. Более точно твердотельный лазер в соответствии с изобретением, такой, как показан на фиг.1, содержит:

- кольцеобразный оптический резонатор 1, содержащий четыре зеркала 11, 12, 13 и 14. По существу квадратная форма оптического резонатора, показанная на фиг.1, конечно, представлена только как показатель. Резонатор также может иметь треугольную или прямоугольную форму, содержащуюся или не содержащуюся в плоскости;

- твердотельную усилительную среду 15 с накачкой от лазерного диода 16, мощность оптической эмиссии которого определяют с помощью источника 17 подачи тока, эта среда может, например, представлять собой кристалл ND-YAG. Представление диода на фигуре 1, конечно, является исключительно формальным. Накачка усилительной среды может осуществляться от нескольких диодов, установленных таким образом, чтобы оптимизировать эффективность преобразования, однородность усиления, состояния поляризации и т.д.;

- резонатор 1 и усилительная среда 15 выполнены таким образом, что две оптические моды 5 и 6, называемые модами противоположного вращения, распространяются в противоположных направлениях друг другу внутри упомянутого оптического резонатора, при этом гиролазер представляет собой лазер класса В в соответствии с определением, приведенном в данном описании;

- средство 18 измерения разности оптической частоты, существующее между двумя оптическими модами. Это средство чаще всего состоит, с одной стороны, из интерферометрических устройств, обеспечивающих возможность интерференции двух противоположно вращающихся мод друг с другом и, с другой стороны, оптоэлектронного средства, позволяющего анализировать частоту сигнала интерференции. Эти средства хорошо известны специалистам по гиролазерам и не будут подробно описаны в данном описании;

- различные оптические средства 19, позволяющие уменьшить или устранить оптическую связь между двумя противоположно вращающимися режимами, эти различные средства, в общем, основаны либо на невзаимных оптических эффектах, таких как Фарадея, или на поляризации, при этом две вращающиеся противоположно моды тогда имеют разную поляризацию. Устройство в соответствии с изобретением совместимо с этим средством;

- средства 20 и 21 измерения общей оптической мощности, циркулирующей в оптическом резонаторе. Эти средства могут, например, состоять из двух фотодетекторов, которые вводят малую фракцию вращающихся противоположно мод, причем электронные сигналы, поступающие из этих фотодетекторов, затем суммируют в электронном виде;

- первое средство 22 управления током, подаваемым источником питания, таким образом, чтобы поддерживать, по существу, постоянной общую оптическую мощность.

Эти средства управления предпочтительно работают в диапазоне частот, с центром на частоте релаксации и с минимальной шириной, заданной как 1/4πT1, где значение частоты релаксации увеличивается со скоростью накачки. Сигнал ошибки, представляющий общую интенсивность лазера, состоит из некогерентной суммы интенсивностей двух противоположно вращающихся лучей, излучаемых лазером. Ток накачки диода затем воздействует для того, чтобы противопоставить две вариации суммарной мощности вокруг частоты ωr.

Такое устройство позволяет исключить выход из-под контроля лазера, который быстро приводит к его дестабилизации, и, наоборот, поддерживает две интенсивности в стабильном рабочем режиме.

Следует отметить, что существует способ, позволяющий устранить колебания релаксации из спектра твердотельных лазеров. Более полную информацию об этом способе можно найти в публикациях Т. Kane, представленных в IEEE Photonics Technology letters 2, 244 (1990) and by C. Harb, M. Gray, H.A. Bachor, R. Schilling, P. Rottengatter, I. Freitag and H. Welling, IEEE journal of Quantum Electronics 30 (12), 2907 (1994). Однако существует несколько основных различий между устройством в соответствии с изобретением и данным предшествующим уровнем техники, как поясняется ниже:

Порядки магнитуды не являются одинаковыми. В устройстве в соответствии с изобретением это вопрос предотвращения выхода из-под контроля лазера, что может привести к модуляции интенсивностей, достигающих до 100%, и поддержания лазера в состоянии равновесия, достаточном для него, чтобы обеспечить возможность измерения. Принимая во внимание, что устройства, описанные в предыдущих документах, позволяют устранить малые вариации, типично меньше, чем 1% интенсивности, для удаления их из спектра шумов лазера, который, кроме того, естественно находится в непрерывном состоянии равновесия.

Области техники отличаются друг от друга. Лазеры в соответствии с публикацией Kane и Harb не являются гиролазерами, но представляют собой кольцевые лазеры с противоположно вращающимися модами;

Наконец, область использования не одинакова. В контексте данного изобретения она представляет собой область инерционных датчиков, в то время как в публикации Kane и Harb относятся к с задающим лазерам с высокой спектральной чистотой и имеющим низким шумы.

Корректное функционирование устройства гарантируется тем фактом, что лазер имеет максимальную чувствительность и поэтому контур обратной связи имеет максимальную эффективность вокруг частоты релаксации, которая точно представляет частоту, на которой требуется корректировать лазер. Естественно, что средства управления учитывают амплитудные и фазовые отклики гиролазера на синусоидальную модуляцию скорости накачки, причем порядки магнитуды параметров управления могут быть определены экспериментально в начале.

Второе явление, требующее активного управления мощностью, подаваемой диодом оптической накачки в твердотельном гиролазере, относится к эффекту пространственных вариаций усиления по частотному отклику, причем такие вариации позволяют вводить связь между противоположно вращающимися модами резонатора лазера, используя "эффект системы". Такая нелинейность частотного отклика, вызванная усилением, значение которого задано уравнением (А), в частности, пропорциональна скорости η накачки. Как упомянуто выше, конкретные устройства можно использовать для уменьшения этого значения, например, путем перевода среды усиления в продольную вибрацию. Можно показать, что в определенных условиях, в частности, в отношении частоты вибрации среды усиления такая нелинейность может быть записана как Δf=γηJ0(kxm)/(4пT1Ω), где k=2π/λ и где xm представляет собой амплитуду от пика до пика движения. Хотя соответствие условиям J0(kxm)<<1 позволяет значительно уменьшить влияние этой нелинейности, остаточная ошибка из-за него также, тем не менее, пропорциональна скорости накачки и также требует наличия управления средним значением скорости накачки.

Гиролазер в соответствии с изобретением поэтому может содержать второй контур обратной связи, который предназначен для поддержания постоянного среднего значения скорости оптической накачки в твердотельном гиролазере для ограничения деградации рабочей характеристики, индуцированной неоднородной природой усиления; область действия этого контура, в частности, в большей степени относится к низким частотам и в любом случае к частотам ниже ωr.

Поэтому предпочтительно использовать информацию, полученную путем измерений частоты релаксации, для более точной оценки эффективной скорости накачки лазера по сигналу ошибки второго контура обратной связи. Поскольку такие измерения могут быть затруднены из-за включения первого контура обратной связи, последний можно периодически прерывать в соответствии, например, с низкочастотной выборкой для того, чтобы обеспечить возможность таких измерений.

Похожие патенты RU2526893C2

название год авторы номер документа
ГИРОЛАЗЕР С ТВЕРДОТЕЛЬНОЙ УСИЛИТЕЛЬНОЙ СРЕДОЙ И С КОЛЬЦЕВИДНЫМ ОПТИЧЕСКИМ РЕЗОНАТОРОМ 2009
  • Гютти Франсуа
  • Фенье Жилль
  • Шварц Сильвэн
RU2540452C2
СТАБИЛИЗИРОВАННЫЙ ТВЕРДОТЕЛЬНЫЙ ГИРОЛАЗЕР С АНИЗОТРОПНОЙ ЛАЗЕРНОЙ СРЕДОЙ 2004
  • Фенье Жилль
  • Пошолль Жан-Поль
  • Шварц Сильвэн
RU2359232C2
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕРНЫЙ ГИРОСКОП С МЕХАНИЧЕСКИ АКТИВИРУЕМОЙ УСИЛИВАЮЩЕЙ СРЕДОЙ 2007
  • Шварц Сильвэн
  • Гютти Франсуа
  • Пошолль Жан-Поль
  • Фенье Жилль
RU2437062C2
ГИРОЛАЗЕР, СОДЕРЖАЩИЙ ТВЕРДЫЙ ЦИЛИНДРИЧЕСКИЙ УСИЛИТЕЛЬНЫЙ СТЕРЖЕНЬ, И СООТВЕТСТВУЮЩИЙ СПОСОБ ВОЗБУЖДЕНИЯ ТВЕРДОГО ЦИЛИНДРИЧЕСКОГО УСИЛИТЕЛЬНОГО СТЕРЖНЯ ГИРОЛАЗЕРА 2009
  • Луаль Эрик
RU2503925C2
СТАБИЛИЗИРОВАННЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕРНЫЙ ГИРОСКОП 2004
  • Швартц Сильвен
  • Фенье Жилль
  • Покошолль Жан-Поль
RU2331846C2
ТВЕРДОТЕЛЬНЫЙ МАЗЕР НА ЭЛЕКТРОНАХ ПРОВОДИМОСТИ 2007
  • Виглин Николай Альфредович
  • Устинов Владимир Васильевич
RU2351045C1
ВОЛОКОННЫЙ ЛАЗЕР ДЛЯ ГЕНЕРАЦИИ СВЕТОВЫХ ИМПУЛЬСОВ 2013
  • Дмитриев Александр Капитонович
  • Комаров Андрей Константинович
RU2540936C1
УСТРОЙСТВО ЦИФРОВОЙ ОБРАБОТКИ ИНФОРМАЦИИ, ПОСТУПАЮЩЕЙ ОТ ГИРОЛАЗЕРА, И СООТВЕТСТВУЮЩИЙ ГИРОЛАЗЕР 2011
  • Буйа Стефан
RU2558011C2
МНОГОПРОХОДНЫЙ УСИЛИТЕЛЬ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2002
  • Першин С.М.
RU2231879C1
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕРНЫЙ ГИРОСКОП-МУЛЬТИГЕНЕРАТОР С ИСПОЛЬЗОВАНИЕМ КРИСТАЛЛИЧЕСКОЙ СРЕДЫ УСИЛЕНИЯ СО СРЕЗОМ НА <100> 2008
  • Шварц Сильвэн
  • Фенье Жилль
  • Пошолль Жан-Поль
RU2504732C2

Реферат патента 2014 года ТВЕРДОТЕЛЬНЫЙ ГИРОЛАЗЕР С УПРАВЛЯЕМОЙ ОПТИЧЕСКОЙ НАКАЧКОЙ

Изобретение относится к гиролазерам. Гиролазер содержит кольцеобразный оптический резонатор, содержащий три зеркала и твердотельную усилительную среду с накачкой от лазерного диода. Гиролазер относится к классу В и представляет собой лазер, для которого время отклика инверсии заселенности является очень большим по сравнению с другими характерными временами, которые представляют собой время существования когерентностей и характерное время затухания резонатора. При этом гиролазер содержит средство измерения различия оптической частоты, присутствующей между двумя оптическими модами. Кроме того, гиролазер содержит средство измерения общей оптической мощности, циркулирующей в оптическом резонаторе, и первое средство управления током, подаваемым от источника питания таким образом, чтобы поддерживать по существу постоянную общую оптическую мощность, при этом первое средство управления током оптимизировано для работы с первой полосой частот, по существу центрированной на частоте релаксации лазера и шириной 1/(4πT1), где T1 представляет собой время отклика инверсии заселенности в усилительной среде. Технический результат заключается в улучшении инерционных характеристик гиролазера. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 526 893 C2

1. Гиролазер, содержащий, по меньшей мере, один кольцеобразный оптический резонатор (1), содержащий, по меньшей мере, три зеркала (11, 12, 13, 14), твердотельную усилительную среду (15) с накачкой от лазерного диода (16), мощность оптической эмиссии которого определяется источником (17) питания тока, при этом указанный резонатор (1) и усилительная среда (15) выполнены таким образом, что две так называемые противоположно вращающиеся оптические моды (5, 6), распространяются в противоположных направлениях друг к другу в упомянутом оптическом резонаторе, причем гиролазер представляет собой гиролазер класса В, представляющий собой лазер, для которого время отклика инверсии заселенности является очень большим, по сравнению с другими характерными временами, которые представляют собой время существования когерентностей и характерное время затухания резонатора, при этом гиролазер также содержит средство (18) измерения различия оптической частоты, присутствующей между двумя оптическими модами, отличающийся тем, что гиролазер содержит средство (20, 21) измерения общей оптической мощности, циркулирующей в оптическом резонаторе, и первое средство управления (22) током, подаваемым от источника питания таким образом, чтобы поддерживать по существу постоянную общую оптическую мощность, при этом первое средство управления током оптимизировано для работы с первой полосой частот, по существу центрированной на частоте релаксации лазера и шириной 1/(4πT1), где T1 представляет собой время отклика инверсии заселенности в усилительной среде.

2. Гиролазер по п.1, отличающийся тем, что гиролазер также содержит второе средство управления током, подаваемым источником питания, оптимизированное для работы со второй полосой частот, нижний предел которой соответствует низким частотам, близким к постоянному току, и верхний предел которой соответствует частоте релаксации.

3. Гиролазер по п.1, отличающийся тем, что первые средства управления током периодически отключают таким образом, чтобы обеспечить возможность колебаний оптической мощности на частоте релаксации лазера, причем гиролазер содержит средство измерения упомянутой частоты, средство расчета эффективной скорости накачки по результатам измерения упомянутой частоты и средство регулирования параметров второго средства управления, как функции упомянутой скорости накачки.

Документы, цитированные в отчете о поиске Патент 2014 года RU2526893C2

US 2008043225 A1, 21.02.2008,
И.И.Золотоверх и др
"Параметрические процессы и мультистабильность в кольцевом чип-лазере с периодической модуляцией накачки", журнал "Квантовая электроника", 23, N10, 1996, стр.938 - 942
Н.В.Кравцов и др
"Автомодуляционные колебания и релаксационные процессы в твердотельных кольцевых лазерах", журнал "Квантовая электроника", 21, N10, 1994, стр.903 - 918
US 6639680 B1, 28.10.2003

RU 2 526 893 C2

Авторы

Шварц Сильвэн

Фенье Жилль

Гютти Франсуа

Бонноде Этьенн

Алуини Меди

Пошолль Жан-Поль

Даты

2014-08-27Публикация

2009-11-17Подача