СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВОЙ СКВАЖИНЫ Российский патент 2014 года по МПК E21B47/10 

Описание патента на изобретение RU2526965C1

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений.

Известен способ контроля за процессом обводнения газовой скважины, включающий проведение газодинамических исследований методом установившихся отборов, определение коэффициентов фильтрационного сопротивления а и b, анализ динамики коэффициентов фильтрационного сопротивления а и b во времени, построение графиков их изменения во времени, сравнение значений коэффициентов фильтрационного сопротивления а и b с предыдущими, вывод о поступлении пластовых вод в призабойную зону пласта по скачкообразному увеличению значений коэффициентов фильтрационного сопротивления. [Патент РФ №2202692, С2, 20.04.2003].

Недостатком данного способа являются сравнительно большие ошибки при определении даты изменения коэффициентов фильтрационного сопротивления за счет увеличения степени обводнения призабойной зоны пласта, что обусловлено большими интервалами времени между датами проведения газодинамических исследований скважин методом установившихся отборов.

Наиболее близким к предлагаемому изобретению является способ контроля за процессом обводнения призабойной зоны пласта, включающий фиксирование дебита газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод об увеличении степени обводнения призабойной зоны пласта при пересечении кривых первой и второй главных компонент. [Патент РФ №2447281, С2, 10.04.2012].

Недостатком данного способа являются ошибки в определении даты увеличения коэффициентов фильтрационного сопротивления за счет изменения степени обводнения призабойной зоны пласта, связанные с неучетом основных факторов, характеризующих степень обводнения. К ним относятся общая минерализация проб смешанной подошвенной и конденсационной воды и удельное количество подошвенной воды в продукции скважины.

Задачей предлагаемого технического решения является разработка способа контроля за процессом обводнения газовой скважины, включение нормированных значений общей минерализации воды и удельного количества подошвенной воды в продукции газовой скважины в матрицу исходных данных.

Техническим результатом предлагаемого изобретения является уточнение даты изменения коэффициентов фильтрационного сопротивления призабойной зоны за счет учета основных факторов, характеризующих степень обводнения призабойной зоны пласта. При этом газовая скважина переходит на другой режим работы.

Поставленный технический результат достигается тем, что в способе контроля за обводнением газовой скважины, включающем фиксирование расхода газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод об увеличении степени обводнения призабойной зоны пласта при пересечении кривых первой и второй главных компонент, проводят периодически отбор проб смешанной подошвенной и конденсационной воды, определение общей минерализации проб воды, определение удельного количества подошвенной воды в продукции скважины, включение нормированных значений общей минерализации проб воды и удельного количества подошвенной воды в продукции скважины в матрицу исходных данных.

Способ реализуется следующим образом. Между датами проведения гидродинамических исследований методом установившихся отборов фиксируют дебит газа и забойное давление при работе скважины на технологическом режиме, заданном проектом разработки газового месторождения.

Метод установившихся отборов предусматривает измерение дебит газа и забойного давления при нескольких (3-5) установившихся режимах эксплуатации скважины. Согласно Правилам разработки газовых месторождений такие исследования проводятся один раз в год (в начальный период разработки - два раза в год). Длительность этих исследований - несколько суток.

Весь остальной период в календарном году скважина работает на технологическом режиме, который предусмотрен проектом разработки газового месторождения.

Одновременно с измерениями расхода газа и забойного давления периодически проводят отбор проб выносимой из скважины смешанной подошвенной и конденсационной воды, определение общей минерализации этой смеси и удельного количества подошвенной воды в продукции скважины.

На основании регистрируемых данных по дебиту газа, забойного давления, общей минерализации выносимой из скважины смешанной подошвенной и конденсационной воды, удельного количества подошвенной воды в продукции скважины формируется многомерный сигнал, включающий ряд одномерных сигналов, показывающих изменение во времени

- забойного давления;

- дебита газа;

- первой производной дебита газа по времени;

- дебита газа в квадрате;

- общей минерализации выносимой из скважины смешанной подошвенной и конденсационной воды;

- удельного количества подошвенной воды в продукции скважины. Проводится дискретизация каждого одномерного сигнала. Полученные последовательности чисел можно представить в виде матрицы:

Х = | х 11 х 12 х 1 N х 21 х 22 х 2 N х M 1 х M 2 х M N |                                                                  (1)

где N - число одномерных сигналов;

М - длина последовательности.

Значения xij, приведенные в матрице, представляют собой m-ю производную случайной функции Х(t), имеющей две составляющие: неслучайное воздействие, описываемое полиномом n-й степени K = 0 n α K t K (где αK - любые постоянные коэффициенты), и возмущающее случайное воздействие, представляющее собой белый шум [Лифшиц Н.А., Пугачев В.Н. Вероятностный анализ систем автоматического управления. - Т.1. - М.: Советское радио, 1963. - 896 с.].

При m=0 и n=1 имеет место нулевая производная. В этом случае, например, для первого столбца матрицы X имеем

Х 01 = i n 1 Х i K 0 i Δ t ,

K 0 i = 4 T 6 T 2 t i ,

где T - интервал памяти;

ti - числовые значения переменной интегрирования;

Δt - шаг дискретизации;

n1 - число шагов на интервале памяти Т.

При m=1 и n=1 имеет место первая производная. В этом случае, например, для третьего столбца имеем

Х 03 = i n 1 Х i K 1 i Δ t ,

K 1 i = 6 T 2 12 T 3 t i .

Далее значения xij матрицы (1) нормируются. Для матрицы нормированных значений находится ковариационная матрица, на основании которой определяются матрица собственных чисел и матрица собственных векторов. Главные компоненты определяются собственными векторами, которые соответствуют наибольшим собственным числам ковариационной матрицы исходных данных, приведенных в матрице (1). Для выделения главных компонент, описывающих процесс без существенной потери информации, используются критерий Кайзера и критерий каменистой осыпи Кэттелла. Используя метод преобразования переменных, можно ограничиться отбором только первых двух главных компонент. Тогда по мере увеличения числа временных шагов дискретизации при скользящем интервале памяти Т за счет изменения степени обводнения призабойной зоны пласта осуществляется переход одного режима работы газовой скважины в другой режим. Смена режимов сопровождается пересечением первых двух главных компонент.[Второва И.А., Качалов О.Б., Плесовских К.Ю. Обработка многомерного сигнала на основе метода главных компонент. Труды Нижегородского государственного технического университета им. Р.Е. Алексеева №3(82), 2011 г., с.21-26].

Данное техническое решение позволит уточнить дату изменения степени обводнения призабойной зоны пласта за счет учета основных факторов, характеризующих степень обводнения продуктивного пласта. Особенно перспективно оно при измерении продукции газовой скважины с помощью многофазного расходомера.

Похожие патенты RU2526965C1

название год авторы номер документа
СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ИЗМЕНЕНИЯ КОЭФФИЦИЕНТОВ ФИЛЬТРАЦИОННОГО СОПРОТИВЛЕНИЯ ПРИЗАБОЙНОЙ ЗОНЫ ГАЗОВОЙ СКВАЖИНЫ 2013
  • Кучеровский Всеволод Михайлович
  • Качалов Олег Борисович
  • Ямпурин Николай Петрович
  • Гребенников Валентин Тимофеевич
  • Кормишева Ирина Александровна
RU2531971C1
СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВЫХ СКВАЖИН 2010
  • Качалов Олег Борисович
  • Гребенников Валентин Тимофеевич
  • Плесовских Ксения Юрьевна
  • Кудрявцева Елена Александровна
  • Сахаров Алексей Владимирович
RU2447281C2
СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВЫХ СКВАЖИН 2000
  • Кононов В.И.
  • Облеков Г.И.
  • Березняков А.И.
  • Гордеев В.Н.
  • Поляков В.Б.
  • Харитонов А.Н.
  • Забелина Л.С.
RU2202692C2
Способ контроля за разработкой газового месторождения 2018
  • Абукова Лейла Азретовна
  • Абрамова Ольга Петровна
  • Тупысев Михаил Константинович
RU2681144C1
Способ выявления скважин - обводнительниц и водоприточных интервалов в газовых скважинах 2016
  • Шапченко Михаил Михайлович
  • Шапченко Татьяна Александровна
  • Сассон Ольга Викторовна
  • Маминов Лев Георгиевич
  • Черняк Валерий Маркович
  • Клигман Сергей Эрикович
RU2611131C1
СПОСОБ ПОШАГОВОГО РЕГУЛИРОВАНИЯ ДОБЫЧИ ГАЗА 2015
  • Шапченко Михаил Михайлович
  • Шапченко Татьяна Александровна
  • Дорофеев Александр Александрович
  • Воробьев Владислав Викторович
  • Сопнев Тимур Владимирович
RU2593287C1
СПОСОБ РАЗРАБОТКИ ТРЕЩИННО-КАВЕРНОЗНОЙ ЗАЛЕЖИ С ГАЗОВОЙ ШАПКОЙ И ПОДСТИЛАЮЩЕЙ ВОДОЙ 2022
  • Каневская Регина Дмитриевна
  • Пименов Андрей Андреевич
  • Кундин Александр Семенович
  • Кузнецов Павел Владимирович
  • Рыжова Лейла Лемаевна
RU2808627C1
Способ определения водного фактора газового промысла 2001
  • Кононов В.И.
  • Зайнуллин В.Ф.
  • Гордеев В.Н.
  • Облеков Г.И.
  • Березняков А.И.
  • Дурновцев А.Е.
  • Миннибаев А.А.
RU2217588C2
Способ гидравлического разрыва пласта на карбонатной залежи высоковязкой нефти 2022
  • Андаева Екатерина Алексеевна
  • Гиздатуллин Рустам Фанузович
RU2784709C1
Способ разработки нефтяной залежи с глиносодержащим коллектором 2017
  • Бурханов Рамис Нурутдинович
  • Максютин Александр Валерьевич
RU2662724C1

Реферат патента 2014 года СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВОЙ СКВАЖИНЫ

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом предлагаемого изобретения является уточнение даты изменения коэффициентов фильтрационного сопротивления призабойной зоны за счет учета основных факторов, характеризующих степень обводнения призабойной зоны пласта. Поставленный технический результат достигается тем, что в способе контроля за обводнением газовой скважины, включающем фиксирование расхода газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод об увеличении степени обводнения призабойной зоны пласта при пересечении кривых первой и второй главных компонент, проводят периодически отбор проб смешанной подошвенной и конденсационной воды, определение общей минерализации проб воды, определение удельного количества подошвенной воды в продукции скважины, включение нормированных значений общей минерализации проб воды и удельного количества подошвенной воды в продукции скважины в матрицу исходных данных.

Формула изобретения RU 2 526 965 C1

Способ контроля за процессом обводнения газовой скважины, включающий фиксирование расхода газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих нормированные значения расхода газа и расхода газа в квадрате, забойного давления, первые производные расхода газа и расхода газа в квадрате, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод об увеличении степени обводнения призабойной зоны пласта при пересечении кривых первой и второй главных компонент, отличающийся тем, что периодически проводят отбор проб выносимой из скважины смешанной подошвенной и конденсационной воды, определение общей минерализации пробы воды, определение удельного количества подошвенной воды в продукции газовой скважины, включение нормированных значений общей минерализации воды и удельного количества подошвенной воды в продукции газовой скважины в матрицу исходных данных.

Документы, цитированные в отчете о поиске Патент 2014 года RU2526965C1

СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВЫХ СКВАЖИН 2010
  • Качалов Олег Борисович
  • Гребенников Валентин Тимофеевич
  • Плесовских Ксения Юрьевна
  • Кудрявцева Елена Александровна
  • Сахаров Алексей Владимирович
RU2447281C2
Способ определения водного фактора газового промысла 2001
  • Кононов В.И.
  • Зайнуллин В.Ф.
  • Гордеев В.Н.
  • Облеков Г.И.
  • Березняков А.И.
  • Дурновцев А.Е.
  • Миннибаев А.А.
RU2217588C2
СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВЫХ СКВАЖИН 2000
  • Кононов В.И.
  • Облеков Г.И.
  • Березняков А.И.
  • Гордеев В.Н.
  • Поляков В.Б.
  • Харитонов А.Н.
  • Забелина Л.С.
RU2202692C2
Способ определения продуктивной характеристики газовых и газоконденсатных скважин 1988
  • Гурленов Евгений Михайлович
  • Гильфанов Марат Ахматфаязович
SU1643709A1
Способ контроля за обводнением нефтяных скважин 1983
  • Муляк Владимир Витальевич
SU1130689A1
US 5029482 A1, 09.07.1991

RU 2 526 965 C1

Авторы

Кучеровский Всеволод Михайлович

Качалов Олег Борисович

Котенков Сергей Игоревич

Ямпурин Николай Петрович

Гребенников Валентин Тимофеевич

Даты

2014-08-27Публикация

2013-04-23Подача