Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений.
Известен способ контроля за процессом изменения коэффициентов фильтрационного сопротивления призабойной зоны газовой скважины, включающий проведение газодинамических исследований методом установившихся отборов, определение коэффициентов фильтрационного сопротивления a и b, анализ динамики коэффициентов фильтрационного сопротивления a и b во времени, построение графиков их изменения во времени, сравнение значений коэффициентов фильтрационного сопротивления a и b с предыдущими, вывод о наличии пластовых вод в призабойной зоне пласта по скачкообразному увеличению значений коэффициентов фильтрационного сопротивления [патент РФ №2202692, опубл. 20.04.2003].
Недостатком данного способа являются сравнительно большие ошибки при определении даты изменения коэффициентов фильтрационного сопротивления за счет поступления пластовых и/или подошвенных вод, что обусловлено большими интервалами времени между датами проведения газодинамических исследований скважин методом установившихся отборов.
Наиболее близким к предлагаемому изобретению является способ контроля за процессом изменения коэффициентов фильтрационного сопротивления призабойной зоны пласта, включающий фиксирование дебита газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод об изменении коэффициентов фильтрационного сопротивления за счет поступления воды в призабойную зону пласта при пересечении кривых первой и второй главных компонент [патент РФ №2447281, опубл. 10.04.2012].
Недостатком данного способа являются ошибки, связанные с неучетом изменения коэффициентов фильтрационного сопротивления за счет изменения напряженного состояния призабойной зоны и всего пласта при отборе газа в процессе разработки газового месторождения.
Задачей предлагаемого изобретения является учет влияния изменения напряженного состояния газоносного пласта на изменение коэффициентов фильтрационного сопротивления призабойной зоны.
Технический результат достигается тем, что в способе контроля за изменением коэффициентов фильтрационного сопротивления, включающем фиксирование расхода газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод о смене одного режима работы скважины на другой при пересечении кривых первой и второй главных компонент, проводят гидрохимический контроль за работой газовой скважины и при значениях гидрохимических показателей, соответствующих конденсационной воде, делают вывод, что смена режима свидетельствует об изменении коэффициентов фильтрационного сопротивления призабойной зоны пласта за счет изменения напряженного состояния горных пород.
Способ реализуется следующим образом. Между датами проведения гидродинамических исследований методом установившихся отборов фиксируют дебит газа и забойное давление при работе скважины на технологическом режиме, заданном проектом разработки газового месторождения.
Метод установившихся отборов предусматривает измерение дебита газа и забойного давления при нескольких (3-5) установившихся режимах эксплуатации скважины. Согласно Правилам разработки газовых месторождений такие исследования проводятся один раз в год (в начальный период разработки - два раза в год). Длительность этих исследований - несколько суток.
Весь остальной период в календарном году скважина работает на технологическом режиме, который предусмотрен проектом разработки газового месторождения.
На основании снимаемых в этот период данных по дебиту газа и забойного давления формируется многомерный сигнал, включающий ряд одномерных сигналов, показывающих изменение во времени:
- забойного давления;
- дебита газа;
- первой производной дебита газа по времени;
- дебита газа в квадрате;
- первой производной дебита газа в квадрате по времени.
Проводится дискретизация каждого одномерного сигнала.
Полученные последовательности чисел можно представить в виде матрицы:
где N - число одномерных сигналов;
М - длина последовательности.
Значения xij, приведенные в матрице, представляют собой m-ю производную случайной функции Х(t), имеющей две составляющие: неслучайное воздействие, описываемое полиномом n-й степени
При m=0 и n=1 имеет место нулевая производная. В этом случае, например, для первого столбца матрицы X имеем
где T - интервал памяти;
ti - числовые значения переменной интегрирования;
Δt - шаг дискретизации;
n1 - число шагов на интервале памяти T.
При m=1 и n=1 имеет место первая производная. В этом случае, например, для третьего столбца имеем
Далее значения xij матрицы (1) нормируются. Для матрицы нормированных значений находится ковариационная матрица, на основании которой определяются матрица собственных чисел и матрица собственных векторов. Главные компоненты определяются собственными векторами, которые соответствуют наибольшим собственным числам ковариационной матрицы исходных данных, приведенных в матрице (1). Для выделения главных компонент, описывающих процесс без существенной потери информации, используются критерий Кайзера и критерий каменистой осыпи Кэттелла. Используя метод преобразования переменных, можно ограничиться отбором только первых двух главных компонент. Тогда по мере увеличения числа шагов дискретизации при скользящем интервале памяти Т переход одного режима в другой режим сопровождается пересечением первых двух главных компонент.
Одновременно с замерами расхода газа, забойного давления и обработкой результатов измерений используется гидрохимический метод за работой газовой скважины. При этом, как показывает опыт промысловых работ в этом направлении, отбирают пробы воды в среднем через 30-50 суток. В пробах воды определяют содержание хлорид-иона (мг/л). Если содержание хлорид-иона соответствует содержанию его в конденсационной воде, выпадающей за счет изменения термодинамических условий газового потока, то следует вывод, что пластовые воды в призабойную зону не поступают. И тогда пересечение первой и второй главных компонент свидетельствует об изменении режима работы скважины. При этом основным фактором, влияющим на значения коэффициентов фильтрационного сопротивления, является изменение напряженного состояния горных пород.
Данное техническое решение позволит изучать влияние изменения напряженного состояния горных пород на изменение коэффициентов фильтрационного сопротивления призабойной зоны пласта и в дальнейшем прогнозировать значения коэффициентов фильтрационного сопротивления при совместном действии двух влияющих вышеуказанных факторов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВОЙ СКВАЖИНЫ | 2013 |
|
RU2526965C1 |
СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВЫХ СКВАЖИН | 2010 |
|
RU2447281C2 |
Способ повышения производительности газовых скважин | 2022 |
|
RU2798147C1 |
Способ определения коэффициентов фильтрационных сопротивлений газоконденсатной скважины | 2023 |
|
RU2812730C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПРИЗАБОЙНОЙ ЗОНЫ ГАЗОВОЙ СКВАЖИНЫ | 1998 |
|
RU2151869C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПАРАМЕТРОВ СОВМЕСТНО РАБОТАЮЩИХ ГАЗОВЫХ ПЛАСТОВ | 2011 |
|
RU2473803C1 |
СПОСОБ ОПТИМИЗАЦИИ ПЕРИОДИЧНОСТИ ГАЗОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН НА НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА | 2017 |
|
RU2661502C1 |
Способ интенсификации притока газовых скважин | 2022 |
|
RU2788934C1 |
СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВЫХ СКВАЖИН | 2000 |
|
RU2202692C2 |
Способ исследования скважин при кустовом размещении | 2016 |
|
RU2644997C2 |
Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом изобретения является учет влияния изменения напряженного состояния газоносного пласта на изменение коэффициентов фильтрационного сопротивления призабойной зоны. Сущность изобретения: способ включает фиксирование расхода газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод о смене одного режима работы скважины на другой при пересечении кривых первой и второй главных компонент. Согласно изобретению одновременно с фиксированием расхода газа и забойного давления отбирают пробы воды, в которых определяют содержание хлорид-иона. При содержании хлорид-иона, соответствующем его содержанию в конденсационной воде, выпадающей за счет изменения термодинамических условий газового потока, делают вывод, что смена режима свидетельствует об изменении коэффициентов фильтрационного сопротивления призабойной зоны пласта за счет изменения напряженного состояния горных пород.
Способ контроля за процессом изменения коэффициентов фильтрационного сопротивления призабойной зоны газовой скважины, включающий фиксирование расхода газа и забойного давления между датами проведения газодинамических исследований методом установившихся отборов, определение значений первой и второй главных компонент, соответствующих наибольшим собственным числам ковариационной матрицы исходных данных, включающих значения нулевых и первых производных дебита газа, дебита газа в квадрате, забойного давления, анализ динамики первой и второй главных компонент во времени, построение графиков их изменения во времени, вывод о смене одного режима работы скважины на другой при пересечении кривых первой и второй главных компонент, отличающийся тем, что одновременно с фиксированием расхода газа и забойного давления отбирают пробы воды, в которых определяют содержание хлорид-иона, и при содержании хлорид-иона, соответствующем его содержанию в конденсационной воде, выпадающей за счет изменения термодинамических условий газового потока, делают вывод, что смена режима свидетельствует об изменении коэффициентов фильтрационного сопротивления призабойной зоны пласта за счет изменения напряженного состояния горных пород.
СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВЫХ СКВАЖИН | 2010 |
|
RU2447281C2 |
СПОСОБ КОНТРОЛЯ ЗА ПРОЦЕССОМ ОБВОДНЕНИЯ ГАЗОВЫХ СКВАЖИН | 2000 |
|
RU2202692C2 |
СПОСОБ ГРУППОВОГО ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ КУСТОВЫХ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА СТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ | 2007 |
|
RU2338877C1 |
СПОСОБ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН С СУБГОРИЗОНТАЛЬНЫМ И ГОРИЗОНТАЛЬНЫМ ОКОНЧАНИЕМ СТВОЛА | 2009 |
|
RU2386808C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА ГАЗОВОЙ СКВАЖИНЫ, ОБЕСПЕЧИВАЮЩЕГО ВЫНОС КОНДЕНСАЦИОННОЙ ЖИДКОСТИ С ЗАБОЯ | 2011 |
|
RU2474686C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПРИЗАБОЙНОЙ ЗОНЫ ГАЗОВОЙ СКВАЖИНЫ | 1998 |
|
RU2151869C1 |
US 4782898 А 08.11.1988 | |||
РАССОХИН Г.В | |||
и др., Контроль за разработкой газовых и газоконденсатных месторождений | |||
Москва, Недра, 1979, с.91-92 |
Авторы
Даты
2014-10-27—Публикация
2013-09-10—Подача