РЕАКТОР БАРАБАННОГО ТИПА ДЛЯ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ МЕЛКОЗЕРНИСТОГО СЛАНЦА Российский патент 2014 года по МПК C10B1/10 B01F9/06 C10B49/16 

Описание патента на изобретение RU2527456C1

Изобретение относится к устройствам, применяемым в установках термического разложения сланца твердым теплоносителем.

Основным технологическим аппаратом в схеме переработки сланца твердым теплоносителем является барабанный реактор, представляющий собой вращающуюся горизонтальную реторту.

Известны конструкции вращающихся реакторов барабанного типа, предназначенных для пиролиза сланца путем смешения его с твердым теплоносителем (см. А.И. Блохин, М.И. Зарецкий, Г.П. Стельмах, Г.Б. Фрайман «Энерготехнологическая переработка топлив твердым теплоносителем» М., Теплый Стан, 2005 г., стр.206-2176).

Канадско-австралийская разработка «Тасиюк», предназначенная для пиролиза австралийских сланцев, имеет вращающий барабанный, горизонтальный реактор (фиг.1), состоящий из 4-х камер, с образующимся в нем твердым зольным теплоносителем (пат. США №5296102).

Недостатком такого реактора является сложная внутренняя конструкция.

Барабанные горизонтальные вращающие реакторы, использующие в качестве твердого теплоносителя керамические шарики - процесс Тоско-2, разработанные в США для переработки колорадских сланцев, реализованы на единственной демонстрационной установке производительностью 400 т/сутки с высокими выходными параметрами смолы и газа, однако имеют сравнительно высокую потребность в электроэнергии.

Наиболее близкими по сути и достигнутому результату являются реакторы установок с твердым теплоносителем, в которых смешивание сланца с теплоносителем достигается вращением полого цилиндрического горизонтального барабана с гладкой внутренней поверхностью (фиг.2). (Патент РФ №52852, опубл. 14.08.2009 г., кл. C10B 1/10).

Скорость вращения, геометрические размеры и время пребывания сланца в реакторе определены по методике, разработанной Г.А. Красновским («Исследование реакторов барабанного типа для термической переработки мелкозернистого сланца и методика их расчета», ЭНИН им. Г.М. Кржижановского, Москва, 1970 г.). В основе методики лежат исследования движения сыпучего материала во вращающихся печах и барабанах различного назначения. В качестве имитирующего материала использовался речной песок фракции 0,25-1 мм, а также металлургический кокс фракции 0,5-3 мм.

Исследования полукокса промышленных барабанных реакторов УТТ-3000 показали, что содержание органического углерода в полукоксе, выводимом из реактора, составляет 13,6% масс., а при анализе его по методу Фишера выход смолы составляет 2,4% масс., а выход полукоксового газа 11,2 нм3 на 1 тонну полукокса. Эти показатели определяют недостаток действующих промышленных реакторов установок для переработки сланца твердым теплоносителем, заключающийся в том, что они не обеспечивают полный переход летучих органических веществ сланца в парогазовую смесь и в конечном счете в целевые продукты переработки сланца. Потери целевой продукции составляют примерно 10% от расчетного выхода.

Предлагаемое изобретение направлено на устранение этого недостатка.

Для решения поставленной задачи следует исходить из того, что смесь сланца и теплоносителя, поступающая в реактор, не является сыпучим материалом, а относится к псевдожидкостям. Движение псевдожидкости по длине реактора, ее смешение, не соответствует зависимостям, положенным в основу расчетной методики Г.А. Красновского. Полная выгазовка сланца возможна при достижении расчетного времени пребывания сланца в реакторе, что можно обеспечить двумя конструктивными решениями:

- увеличением длины реактора, примерно, вдвое по сравнению с рассчитанной по методике Г.А. Красновского, что приведет к увеличению материальных затрат на изготовление реактора и строительные конструкции и неприемлемо для действующих реакторов;

- конструктивными изменениями внутренней поверхности реактора, что является предметом настоящего изобретения.

Внутренняя поверхность реактора футерована и выполняется с пазухами, параллельными горизонтальной оси реактора, для приема и смешения поступающей псевдоожиженной смеси сланца с теплоносителем, ее надежного перемешивания, достижения снижения расчетного времени пребывания сланца в реакторе, полной его выгазовки и, как следствие, увеличения целевых продуктов переработки мелкозернистого сланца.

Геометрические размеры пазух определяются по зависимости

а - ширина пазухи,

b - глубина пазухи,

c - длина пазухи.

V - геометрический объем пазухи.

Количество пазух определяется из условия равенства геометрического объема одной пазухи объемному секундному расходу смеси сланца с теплоносителем, т.е. v= v′, где v′ - объемный секундный расход смеси сланца с теплоносителем, м3/сек.

Пример расчета геометрических размеров пазух и их количества для горизонтального барабанного реактора, используемого на установках типа УТТ-3000:

Расчетная теплота сгорания используемого сланца составляет 2000 ккал/кг. При этом удельный расход сухого сланца на одну тонну исходного сланца составляет 885 кг/т, а расход теплоносителя 1667 кг/т. Расход смеси сланца с теплоносителем составляет 2552 кг/т или при расчетной производительности УТТ-3000 139 тонн сырого сланца в час 354,73 т/час, 5912,13 кг/мин, 98,53 кг/сек. Удельный вес смеси при рабочих условиях 1,0 т/м3, при этом ее объемный секундный расход составит v′=0,09853 м3/сек. Число оборотов реактора составляет n=0,9 об/мин, а полный оборот реактор совершает за t=66,7 сек.

За один полный оборот в реактор поступит смесь сланца с теплоносителем в объеме v″=v′×t=0,09853×66,7=6,57 м3.

Диаметр внутренней рабочей поверхности барабана, на которой выполняются пазухи, составляет D=4,4 м, глубина пазух b=0,1 м, а ширина а=0,2 м.

Количество пазух определяется как

N=π×D/a=3,14×4,4/0,2=69 шт.,

а длина пазух как

с=v″/N(a×b)=6,57/69×0,2×0,1=4,76 м.

Аналогично определяются геометрические размеры и суммарный объем пазух для барабанных реакторов установок типа УТТ другой производительности по сырому сланцу.

На фиг.3а, б представлена схема футеровки барабанного реактора: а) со штрабами в бетонной или шамотной кладке:

б) с перегородками на металлическом корпусе с отверстиями для связки футеровки.

Барабанный реактор для термической переработки сланца твердым теплоносителем представляет собой корпус в виде полого горизонтального барабана с торцевыми стенками на концах, в которые соосно врезаны входной и выходной патрубки. Для смешения сланца с теплоносителем на внутренней футерованной поверхности корпуса барабанного реактора предусмотрены пазухи, обеспечивающие полное перемешивание смеси, в количестве, определяемом по формуле

N = π D/a,

где D - диаметр внутренней рабочей поверхности барабана,

а - ширина пазухи,

причем геометрический объем одной пазухи соответствует объемному секундному расходу смеси сланца с теплоносителем, а суммарный геометрический объем всех пазух соответствует объемному расходу или превышает объемный расход смеси сланца с теплоносителем, поступающей в реактор за один его оборот.

Барабанный реактор вращается со скоростью 0,9-3 об/мин. При этом достигается надежное перемешивание сланца с теплоносителем. Через входной патрубок в корпус подаются сланец и твердый теплоноситель - горячая зола переработанного сланца. Движение сланца и теплоносителя в осевом направлении обеспечивается за счет разницы уровней материала на входном и выходном патрубках барабана. Перемешивание сланца с теплоносителем происходит при вращении барабана за счет образования наклонной поверхности твердой фазы и скатывания твердых частиц по наклонной поверхности сверху вниз. При контакте сланца с теплоносителем происходит нагрев сланца до температуры, при которой его органическая составляющая переходит в парогазовую фазу и через выходной патрубок отводится в конденсационную аппаратуру. Геометрические размеры барабана обеспечивают время пребывания частиц сланца в реакторе, необходимое для его полной выгазовки. Внутренняя поверхность барабана выполнена с горизонтальными пазухами (штрабами) (3) в бетонной или шамотной футеровке (2). Пазухи в стенках реактора формируются металлическими перегородками (4), расположенными вдоль образующей линии цилиндра реактора, прикрепленными к металлическому корпусу реактора, имеющими отверстия для связывания элементов футеровки с разных сторон перегородки между собой, при этом перегородки имеют высоту, превышающую толщину футеровки на величину, равную или больше высоты пазухи, определяемой в соответствии с формулой (1).

Металлические перегородки предназначены для захвата псевдоожиженной смеси сланца с теплоносителем.

Похожие патенты RU2527456C1

название год авторы номер документа
СПОСОБ И УСТАНОВКА ДЛЯ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ВЫСОКОЗОЛЬНОГО ТВЕРДОГО ТОПЛИВА 2007
  • Блохин Александр Иванович
  • Блохин Сергей Александрович
  • Гольмшток Эдуард Ильич
  • Кожицев Дмитрий Васильевич
  • Петров Михаил Сергеевич
  • Салихов Руслан Минуллаевич
  • Стельмах Геннадий Павлович
RU2340650C1
СПОСОБ И УСТАНОВКА ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ВЫСОКОЗОЛЬНЫХ И НИЗКОКАЛОРИЙНЫХ ТВЕРДЫХ ТОПЛИВ 2006
  • Блохин Александр Иванович
  • Петров Михаил Сергеевич
  • Салихов Руслан Минуллаевич
  • Кожицев Дмитрий Васильевич
  • Гольмшток Эдуард Ильич
RU2320699C1
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ГОРЮЧИХ СЛАНЦЕВ С ПОЛУЧЕНИЕМ ЖИДКИХ И ГАЗООБРАЗНЫХ ТОПЛИВ, А ТАКЖЕ ЦЕМЕНТНОГО КЛИНКЕРА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Блохин Александр Иванович
  • Блохин Сергей Александрович
  • Гольмшток Эдуард Ильич
  • Кожицев Дмитрий Васильевич
  • Петров Михаил Сергеевич
  • Салихов Руслан Минуллаевич
  • Стельмах Геннадий Павлович
RU2339673C1
СПОСОБ ТЕРМИЧЕСКОЙ БЕЗОТХОДНОЙ ПЕРЕРАБОТКИ ТЯЖЕЛЫХ НЕФТЯНЫХ ОСТАТКОВ В СМЕСЯХ С ТВЕРДЫМ ТОПЛИВОМ 2008
  • Сыроежко Александр Михайлович
  • Абдельхафид Фугалья
  • Потехин Вячеслав Матвеевич
  • Ларина Наталия Владиславовна
  • Васильев Валентин Всеволодович
  • Юмашев Эдуард Юрьевич
RU2378317C2
РЕАКТОР ДЛЯ ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ ТВЕРДЫХ ГОРЮЧИХ ИСКОПАЕМЫХ 2007
  • Илясов Валерий Николаевич
RU2342421C2
СПОСОБ ПИРОЛИЗА МЕЛКОЗЕРНИСТЫХ ГОРЮЧИХ СЛАНЦЕВ С ПОЛУЧЕНИЕМ ЖИДКИХ И ГАЗООБРАЗНЫХ ТОПЛИВ С ВЫРАБОТКОЙ ЭЛЕКТРОЭНЕРГИИ И ЦЕМЕНТНОГО КЛИНКЕРА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Салихов Руслан Минуллаевич
  • Петров Михаил Сергеевич
  • Гольмшток Эдуард Ильич
  • Блохин Александр Иванович
  • Стельмах Геннадий Павлович
  • Кожицев Дмитрий Васильевич
  • Блохин Сергей Александрович
RU2423407C2
СПОСОБ ТЕРМОХИМИЧЕСКОЙ ПЕРЕРАБОТКИ НЕФТЯНЫХ ГУДРОНОВ В СМЕСЯХ С ПРИРОДНЫМИ АКТИВАТОРАМИ КРЕКИНГА 2007
  • Сыроежко Александр Михайлович
  • Абдельхафид Фугалья
  • Малов Илья Михайлович
  • Потехин Вячеслав Матвеевич
  • Ларина Наталия Владиславовна
  • Блохин Александр Иванович
  • Гольмшток Эдуард Ильич
  • Кожицев Дмитрий Васильевич
  • Петров Михаил Сергеевич
  • Салихов Руслан Минуллаевич
  • Онуфриенко Сергей Викторович
RU2338773C1
СПОСОБ И УСТАНОВКА ДЛЯ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ТВЕРДОГО ТОПЛИВА С ПОЛУЧЕНИЕМ ПОЛУКОКСА, ГАЗА И ЖИДКИХ ПРОДУКТОВ 2007
  • Кожицев Дмитрий Васильевич
  • Кенеман Федор Евгеньевич
  • Гольмшток Эдуард Ильич
  • Петров Михаил Сергеевич
  • Блохин Александр Иванович
  • Салихов Руслан Минуллаевич
  • Стельмах Геннадий Павлович
RU2378318C2
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ВЫСОКОСЕРНИСТЫХ ГОРЮЧИХ СЛАНЦЕВ 2016
  • Морев Александр Александрович
  • Мракин Антон Николаевич
  • Селиванов Алексей Александрович
RU2634018C1
Газогенератор для термической переработки кускового топлива 1988
  • Артюхов Иван Михайлович
  • Вишнев Виктор Геннадиевич
  • Глезин Иосиф Львович
  • Петров Владимир Николаевич
SU1567593A1

Иллюстрации к изобретению RU 2 527 456 C1

Реферат патента 2014 года РЕАКТОР БАРАБАННОГО ТИПА ДЛЯ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ МЕЛКОЗЕРНИСТОГО СЛАНЦА

Изобретение может быть использовано в химической и топливоперерабатывающей отраслях промышленности. Барабанный реактор для термической переработки сланца твердым теплоносителем представляет собой корпус (1) в виде полого горизонтального барабана с торцевыми стенками на концах, в которые соосно врезаны входной и выходной патрубки. Для смешения сланца с теплоносителем на внутренней футерованной поверхности (2) корпуса (1) барабанного реактора предусмотрены пазухи (3), обеспечивающие полное перемешивание смеси, в количестве, определяемом по формуле

N = π D/a,

где D - диаметр внутренней рабочей поверхности барабана, а - ширина пазухи. Причем геометрический объем одной пазухи (3) соответствует объемному секундному расходу смеси сланца с теплоносителем, а суммарный геометрический объем всех пазух (3) соответствует объемному расходу или превышает объемный расход смеси сланца с теплоносителем, поступающей в реактор за один его оборот. Изобретение позволяет обеспечить полный переход летучих органических веществ сланца в парогазовую смесь с увеличением выхода целевых продуктов переработки сланца до 10%. 3 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 527 456 C1

1. Барабанный реактор для термической переработки сланца твердым теплоносителем, представляющий собой корпус в виде полого горизонтального барабана с торцевыми стенками на концах, в которые соосно врезаны входной и выходной патрубки, отличающийся тем, что для смешения сланца с теплоносителем на внутренней футерованной поверхности корпуса барабанного реактора предусмотрены пазухи, обеспечивающие полное перемешивание смеси, в количестве, определяемом по формуле:
N=πD/a,
где D - диаметр внутренней рабочей поверхности барабана,
a - ширина пазухи,
причем геометрический объем одной пазухи соответствует объемному секундному расходу смеси сланца с теплоносителем, а суммарный геометрический объем всех пазух соответствует объемному расходу или превышает объемный расход смеси сланца с теплоносителем, поступающей в реактор за один его оборот.

2. Барабанный реактор по п.1, отличающееся тем, что пазухи в стенках реактора выполняются в виде штраб в футеровке реактора.

3. Барабанный реактор по п.1, отличающееся тем, что пазухи в количестве 69 штук в стенках реактора имеют глубину 0,1 м, ширину 0,2 м, длину 4,76 м.

4. Барабанный реактор по п.1, отличающийся тем, что пазухи в стенках реактора формируются металлическими перегородками, расположенными вдоль образующей линии цилиндра реактора, прикрепленными к металлическому корпусу реактора, имеющими отверстия для связывания элементов футеровки с разных сторон перегородки между собой, при этом перегородки имеют высоту, превышающую толщину футеровки на величину, равную или больше высоты пазухи.

Документы, цитированные в отчете о поиске Патент 2014 года RU2527456C1

RU 2011116144 A, 27.10.2012
Приспособление к ткацкому станку для предупреждения затяжек на сгибах при выработке мешочных тканей 1937
  • Синягин В.М.
SU52852A1
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ГОРЮЧИХ СЛАНЦЕВ С ПОЛУЧЕНИЕМ ЖИДКИХ И ГАЗООБРАЗНЫХ ТОПЛИВ, А ТАКЖЕ ЦЕМЕНТНОГО КЛИНКЕРА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Блохин Александр Иванович
  • Блохин Сергей Александрович
  • Гольмшток Эдуард Ильич
  • Кожицев Дмитрий Васильевич
  • Петров Михаил Сергеевич
  • Салихов Руслан Минуллаевич
  • Стельмах Геннадий Павлович
RU2339673C1
RU 2066338 C1, 10.09.1996;
US 5296102 A1, 22.03.1994;
БЛОХИН А.И
и др., Энерготехнологическая переработка топлив твердым теплоносителем, Москва, Светлый Стан, 2005, с.206-217, рис.7.2

RU 2 527 456 C1

Авторы

Салихов Руслан Минуллаевич

Петров Михаил Сергеевич

Гольмшток Эдуард Ильич

Блохин Александр Иванович

Кожицев Дмитрий Васильевич

Даты

2014-08-27Публикация

2013-12-10Подача