Предлагаемое техническое решение относится к энергетике, более конкретно - к возобновляемы источникам энергии на основе солнечных башенных электростанций.
Известны устройства (аналоги) - солнечные башенные электростанции на основе реализации цикла Ренкина с использованием расположенных на большой площади следящих за Солнцем плоских зеркал, отражающих солнечные лучи на центральный приемник (котел), помещенный на вершине башни (Твайделл Дж., Уэйр А. Возобновляемые источники энергии: Пер. с англ. - М.: Энергоатомиздат. 1990. Стр.134-136).
В таблице приведены основные характеристики некоторых созданных в мире солнечных башенных электростанций с реализацией цикла Ренкина.
Недостаток устройств-аналогов - низкая эффективность, заключающаяся, как следует из последней строки таблицы, в низком КПД. Полный реальный КПД определяется для солнечного ясного полдня при плотности потока солнечного излучения G=1 кВт/м2 по формуле: η=
Известна когенерационная установка, содержащая двигатель Стирлинга с электрогенератором на одном валу, гидролинии, систему охлаждения двигателя Стирлинга с насосом, камеру сгорания двигателя Стирлинга, теплообменник для передачи тепловой энергии потребителям, теплообменники утилизации теплоты систем охлаждения двигателя Стирлинга, отработанных газов, газофикатор, магистраль генераторного газа, магистраль отработанных газов, двигатель внутреннего сгорания с электрогенератором на одном валу с ним, дополнительные системы охлаждения, утилизации теплоты. (Жаров А.В., Павлов А.А. Когенерационная установка с двигателем внутреннего сгорания и двигателем Стирлинга. Патент РФ №2440504, опубл. 20.01.2012)
Данная установка-прототип обладает тем недостатком, что использует для своей работы углеводородное топливо различных видов, следствием чего всегда является выброс в окружающую среду углекислого газа, что ухудшает экологическую обстановку среды.
Техническая задача, решаемая предлагаемым устройством, состоит в повышении эффективности солнечных башенных электростанций при одновременном улучшении экологической обстановки среды путем исключения выброса в окружающую среду углекислого газа при работе устройства.
Технический результат, заключающийся в повышении КПД солнечных башенных электростанций» достигается тем, что в известной генерирующей установке, содержащей двигатель Стирлинга с электрогенератором на одном валу, систему охлаждения двигателя Стирлинга и нагреватель двигателя Стирлинга, согласно изобретению, нагреватель двигателя Стирлинга помещен на вершине башни солнечной башенной электростанции с зеркалами, которые выполнены с возможностью слежения за Солнцем и отражения солнечных лучей на нагреватель двигателя Стирлинга, при этом установка снабжена выпрямительным и инверторным блоками, регулятором, датчиком температуры рабочего тела в нагревателе двигателя Стирлинга, выход которого соединен с входом регулятора, выход последнего соединен с управляющими входами выпрямительного и инверторного блоков, силовой выход электрогенератора соединен с силовым входом выпрямительного блока, а силовой выход инверторного блока соединен с сетью потребителей. На чертеже представлен общий вид генерирующей установки, содержащей двигатель Стирлинга 1 с электрогенератором 2 на одном валу, систему охлаждения 3 двигателя Стирлинга и нагреватель 4 двигателя Стирлинга. Нагреватель 4 двигателя Стирлинга помещен на вершине башни 5 солнечной башенной электростанции, а расположенные на большой площади зеркала 6 выполнены с возможностью слежения за Солнцем и отражения солнечных лучей 7 на нагреватель 4 двигателя-Стирлинга, при этом электрогенератор 2 снабжен выпрямительным 8 и инверторным 9 блоками, регулятором 10 скорости вращения электрогенератора 2, датчиком 11 температуры рабочего тела в нагревателе 4 двигателя Стирлинга, выход которого соединен с входом регулятора 10, выход последнего соединен с управляющими входами 12 и 13 соответственно выпрямительного 8 и инверторного 9 блоков, силовой выход 14 электрогенератора 2 соединен с силовым входом 15 выпрямительного блока 8, а силовой выход 16 инверторного блока 9 соединен с сетью 17 потребителей. К цепи между выпрямителем 8 и инвертором 9 подключена аккумуляторная батарея 18.
Генерирующая установка работает следующим образом.
При нормальной работе плотность потока солнечного излучения в течение дня меняется по синусоидальному закону, т.е. в периоды восхода и заката плотность потока солнечного излучения имеет минимальное значение, а в солнечный полдень - максимальное значение, характерное для данного времени года (на плотность потока солнечного излучения влияет и облачность). По мере нарастания плотности потока солнечного излучения после восхода Солнца нарастает температура нагревателя 4 двигателя Стирлинга 1. Нагреватель 4 двигателя Стирлинга 1, помещенный на вершине башни 5 солнечной башенной электростанции, нагревается расположенными на большой площади зеркалами 6, следящими за Солнцем и отражающими солнечные лучи 7 на нагреватель двигателя Стирлинга 1.
По мере роста температуры нагревателя 4 растет температура рабочего тела в нем и тепловая мощность двигателя Стирлинга 1. Датчик 11 фиксирует температуру рабочего тела и формирует на своем выходе соответствующий сигнал, который поступает на вход регулятора 10. В простейшем случае регулятор 10 выполнен в виде функционального блока, который формирует на своем выходе сигнал задания скорости вращения электрогенератора 2 в функции температуры рабочего тела, например, по мере роста температуры рабочего тела растет и скорость вращения электрогенератора 2.
Сигнал задания скорости вращения электрогенератора 2 поступает на управляющие входы 12 и 13 соответственно выпрямительного 8 и инверторного 9 блоков, которые обеспечивают скорость вращения электрогенератора 2 в функции мощности двигателя Стирлинга 1. При этом при переменной скорости вращения электрогенератора 2 на выходе инвертора 9 обеспечивается качество электрической энергии, удовлетворяющее требованиям ГОСТ Р 54149-2010.
Особенностью некоторых типов двигателей Стирлинга является то, что в начале работы уже при достижении рабочей температуры двигатель не может стронуться с места. Для запуска в таких случаях предусмотрена возможность работы блоков 8 и 9 как в выпрямительном, так и в инверторном режимах, выполнив их на запираемых ключах, например на транзисторах. При этом, если сеть 17 выполнена автономной (т.е. не содержит других источников), для начального разворота двигателя Стирлинга к цепи между выпрямителем 8 и инвертором 9 подключена аккумуляторная батарея 18, что позволяет кратковременно электрогенератор 2 включить в двигательный режим.
Поставленная задача решена, т.к. повышена эффективность солнечных башенных электростанций применением двигателя Стирлинга, обладающего более высоким КПД (на практике до 35%) при сохранении присущей солнечным башенным электростанциям экологичности.
название | год | авторы | номер документа |
---|---|---|---|
СОЛНЕЧНАЯ БАШЕННАЯ ЭЛЕКТРОСТАНЦИЯ | 2018 |
|
RU2709007C1 |
СПОСОБ УПРАВЛЕНИЯ ТЕПЛОСИЛОВОЙ УСТАНОВКОЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2015 |
|
RU2604095C1 |
СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ (ВАРИАНТЫ) | 1992 |
|
RU2034204C1 |
Устройство управления теплосиловой установкой | 2017 |
|
RU2637345C1 |
ТЕРМОЭЛЕКТРОТРАНСФОРМАТОР | 2018 |
|
RU2692615C1 |
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2022 |
|
RU2801405C1 |
СОЛНЕЧНАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ С ОПТОВОЛОКОННОЙ СИСТЕМОЙ НАВЕДЕНИЯ | 2015 |
|
RU2597729C1 |
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 1991 |
|
RU2013715C1 |
МОЩНАЯ СОЛНЕЧНАЯ ЭЛЕКТРОТЕПЛОСТАНЦИЯ ГЕРУНИ-"АРЕВ" (МСЭТС ГЕРУНИ-АРЕВ") | 2005 |
|
RU2301380C2 |
ЭНЕРГЕТИЧЕСКАЯ ГЕЛИОУСТАНОВКА | 1995 |
|
RU2137054C1 |
Изобретение относится к энергетике. Генерирующая установка содержит двигатель Стирлинга с электрогенератором на одном валу, систему охлаждения двигателя Стирлинга и нагреватель двигателя Стирлинга. Установка снабжена солнечной башенной электростанцией с зеркалами. Нагреватель двигателя Стирлинга расположен на вершине башни солнечной башенной электростанции с зеркалами. Зеркала выполнены с возможностью слежения за Солнцем и отражения солнечных лучей на нагреватель двигателя Стирлинга. Установка снабжена выпрямительным и инверторным блоками, регулятором и датчиком температуры рабочего тела в нагревателе двигателя Стирлинга. Выход датчика температуры соединен с входом регулятора. Выход регулятора соединен с управляющими входами выпрямительного и инверторного блоков. Силовой выход электрогенератора соединен с силовым входом выпрямительного блока. Силовой выход инверторного блока соединен с сетью потребителей. Изобретение направлено на повышение КПД установки. 1 ил., 1 табл.
Генерирующая установка, содержащая двигатель Стирлинга с электрогенератором на одном валу, систему охлаждения двигателя Стирлинга и нагреватель двигателя Стирлинга, отличающаяся тем, что она снабжена солнечной башенной электростанцией с зеркалами, нагреватель двигателя Стирлинга расположен на вершине башни солнечной башенной электростанции с зеркалами, которые выполнены с возможностью слежения за Солнцем и отражения солнечных лучей на нагреватель двигателя Стирлинга, при этом установка снабжена выпрямительным и инверторным блоками, регулятором, датчиком температуры рабочего тела в нагревателе двигателя Стирлинга, выход которого соединен с входом регулятора, выход последнего соединен с управляющими входами выпрямительного и инверторного блоков, силовой выход электрогенератора соединен с силовым входом выпрямительного блока, а силовой выход инверторного блока соединен с сетью потребителей.
Способ приготовления лака | 1924 |
|
SU2011A1 |
Двигатель с внешним подводом теплоты | 1981 |
|
SU964212A1 |
US 7026722 B1, 11.04.2006 |
Авторы
Даты
2014-09-10—Публикация
2013-04-04—Подача