СОЛНЕЧНАЯ БАШЕННАЯ ЭЛЕКТРОСТАНЦИЯ Российский патент 2019 года по МПК F24S30/00 H02S10/30 

Описание патента на изобретение RU2709007C1

Предлагаемое техническое решение относится к энергетике, более конкретно - к возобновляемым источникам энергии на основе солнечных башенных электростанций (гелиотермических электростанций), реализующих термодинамический цикли, например, Ренкина или Стирлинга.

Известно устройство-аналог: Гелиостат (Амстиславский А.З., Муравьев А.И. Гелиостат. Авторское свидетельство СССР №1353995. Опубликован 23.11.87, Бюл. №43). Изобретение позволяет упростить конструкцию гелиостата путем изменения кинематической и оптической связи его зеркал и светочувствительного датчика (СД), а также устранить эффект перекрестной связи в управлении гелиостатом. В центральном отверстии зеркала перпендикулярно его поверхности и в плоскости симметрии цилиндрического шарнира установлен отражатель. Двухкоординатный СД расположен на валу и ориентирован параллельно ему на уровне оси шарнира. Падающее на зеркало солнечное излучение направляется отражателем в сторону СД в направлении, обратном приемнику излучения. При перемещении Солнца СД формирует сигналы на приводы, ориентирующие зеркало на приемник.

Недостатком аналога является необходимость питания приводов, азимутального и зенитного ориентирования зеркал-гелиостатов на приемник (котел) от шин электрогенератора электростанции, что снижает выдачу электроэнергии в энергосистему, т.е. снижает ее эффективность.

Известны устройства (второй аналог) - солнечные башенные электростанции на основе реализации цикла Ренкина с использованием расположенных на большой площади следящих за Солнцем плоских зеркал, отражающих солнечные лучи на центральный приемник (котел), помещенный на вершине башни (Р.Б. Ахмедов, И.В. Баум, В.А. Пожарнов, В.М. Чеховский. Солнечные электрические станции. Сер. "Гелиоэнергетика" (Итоги наука и техники ВИНИТИ). М. 1986). В книге рассматривается наряду с другими и Крымская гелиотермическая станция СЭС-5 с реализацией цикла Ренкина. Вместе с тем на сайте (https://studopedia.ru/13_6786_elektrostantsii-ispolzuyushchie-netraditsionnie-vidi-energii.html) указывается, что для Крымской СЭС-5 полный расход электроэнергии на собственные нужды, в том числе и на питание приводов азимутального и зенитного ориентирования зеркал-гелиостатов, составляет 15%. Таким образом, если полный реальный КПД-брутто для солнечного ясного полдня при плотности потока солнечного излучения G=1 кВт/м составляет

где Р[кВт] - электрическая мощность на выходе электрогенератора, S[м2] - суммарная площадь зеркал-гелиостатов, то с учетом собственных нужд КПД-нетто снижается и составляет

Недостатком второго аналога, как и у первого, является необходимость питания приводов, азимутального и зенитного ориентирования зеркал-гелиостатов на приемник (котел) от шин электрогенератора электростанции, что снижает выдачу электроэнергии в энергосистему, т.е. снижает ее эффективность.

Известно устройство-прототип (Цгоев Р.С., Шлыков Е.Н., Козлов И.С., Погосян А.В. ГЕНЕРИРУЮЩАЯ УСТАНОВКА С ДВИГАТЕЛЕМ СТИРЛИНГА. Патент РФ №2527773. МПК F02G 1/045. Опубликовано: 10.09, 2014. Бюл. №25), согласно которому изобретение относится к энергетике. Генерирующая установка содержит двигатель Стирлинга с электрогенератором на одном валу, систему охлаждения двигателя Стирлинга и нагреватель двигателя Стирлинга. Установка снабжена солнечной башенной электростанцией с зеркалами. Нагреватель двигателя Стирлинга расположен на вершине башни солнечной башенной электростанции с зеркалами. Зеркала выполнены с возможностью слежения за Солнцем и отражения солнечных лучей на нагреватель двигателя Стирлинга. Установка снабжена выпрямительным и инверторным блоками, регулятором и датчиком температуры рабочего тела в нагревателе двигателя Стирлинга. Выход датчика температуры соединен с входом регулятора. Выход регулятора соединен с управляющими входами выпрямительного и инверторного блоков. Силовой выход электрогенератора соединен с силовым входом выпрямительного блока. Силовой выход инверторного блока соединен с сетью потребителей.

Недостатком устройства-прототипа, как и аналогов, является необходимость питания приводов, азимутального и зенитного ориентирования зеркал-гелиостатов на приемник-нагреватель цикла от шин электрогенератора электростанции, что снижает выдачу электроэнергии в энергосистему, т.е. снижает ее эффективность.

Техническая задача, решаемая предлагаемым устройством, состоит в повышении эффективности солнечных башенных электростанций.

Технический результат, заключающийся в повышении КПД солнечных башенных электростанций, достигается тем, что в известной солнечной башенной электростанции, содержащей блок термодинамического цикла, например, Ренкина или Стирлинга, с нагревателем цикла и зеркалами-гелиостатами, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов и отражения солнечных лучей на нагреватель, расположенный на вершине башни солнечной башенной электростанции, сеть потребителей, зеркала-гелиостаты снабжены блоком управления приводами, а также солнечными фотоэлектрическими панелями, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату, или фотоэлектрическими панелями, выполненными неподвижными и размещенными, например, между соседними зеркалами-гелиостатами, при этом входы привода азимутального и привода зенитного слежения за Солнцем каждого зеркала-гелиостата соединены с выходами блока управления приводами, первый вход которого подключен к общей выходной цепи фотоэлектрических панелей, а второй вход подключен к сети потребителей.

На чертеже представлен общий вид солнечной башенной электростанции.

Солнечная башенная электростанция содержит блок 1 термодинамического цикла, например, Ренкина или Стерлинга, с нагревателем 2 цикла и зеркалами-гелиостатами 3, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов 4 и 5, и отражения солнечных лучей на нагреватель 2, расположенный на вершине башни 6 солнечной башенной электростанции, сеть 7 потребителей, зеркала-гелиостаты 3 снабжены блоком 8 управления приводами 4 и 5, а также солнечными фотоэлектрическими панелями 9, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату 3, при этом входы привода 4 азимутального и привода 5 зенитного слежения за Солнцем каждого зеркала-гелиостата 3 соединены с выходами блока 8 управления приводами, первый вход которого подключен к общей выходной цепи 10 фотоэлектрических панелей 9, а второй вход подключен к сети 7 потребителей.

Кроме того, у солнечной башенной электростанции солнечные фотоэлектрические панели 9 могут быть выполнены неподвижными и размещены или между соседними зеркалами-гелиостатами, или на отдельной площадке вне поля зеркал-гелиостатов.

При этом выводы электрогенератора (электрогенератор на рисунке не показан) блока 1 термодинамического цикла через цепь 11 подключены к сети 7 потребителей. На рисунке показаны падающие на зеркало-гелиостат 3 и на фотоэлектрические панели 9 лучи 12 Солнечного излучения, а также отраженные от зеркала-гелиостата 3 лучи 13, падающие на нагреватель 2. Показаны также лучи 14 излучения от нагревателя 2 термодинамического цикла, дополнительно падающие на фотоэлектрические панели 9.

Солнечная башенная электростанция работает следующим образом. Плотность потока солнечного излучения в течение дня меняется по синусоидальному закону, т.е. в периоды восхода и заката плотность потока солнечного излучения имеет минимальное значение, а в солнечный полдень - максимальное значение, характерное для данного времени года (на плотность потока солнечного излучения влияет и облачность) и для местности. Например, летнее максимальное значение в районах, близких к экватору, как упоминалось, плотность потока солнечного излучения составляет G≈1 кВт/м2. По мере нарастания плотности потока солнечного излучения после восхода Солнца нарастает температура нагревателя 2 блока 1 термодинамического цикла, например, Ренкина или Стирлинга. Нагреватель 2, помещенный на вершине башни 6 солнечной башенной электростанции, нагревается расположенными на большой площади зеркалами-гелиостатами 3, следящими за Солнцем с помощью блока 8 управления приводом 4 азимутального и приводом 5 зенитного слежения за Солнцем и тем самым обеспечивается работа термодинамического цикла. При этом падающие лучи 12 Солнечного излучения, отраженные от зеркала-гелиостата 3, в виде лучей 13 падают на нагреватель 2.

Так как в каждый момент хронометраж астрономического перемещения солнца точно известен, то в простейшем случае блока 8 управления выполнен в виде хронометра. Блока 8 управления по астрономическому времени формирует на своем выходе сигнал задания на управление приводом 4 азимутального и приводом 5 зенитного слежения за Солнцем. Солнечные лучи 12 падают и на фотоэлектрические панели 9, которые осуществляют электропитание приводов 4 и 5.

Питание блока 8 управления приводами 4 и 5 в периоды нормального солнечного освещения осуществляется через первый вход, который подключен к общей выходной цепи 10 фотоэлектрических панелей 9, а в периоды облачности и для возврата гелиостата в исходное (утреннее) положение, питание осуществляется через второй вход, подключенный к сети 7 потребителей.

В свою очередь, если выбрать установленную мощность фотоэлектрических панелей 9 равной мощности собственных нужд солнечной башенной электростанции, то КПД-нетто вырастет до КПД-брутто (в вышеприведенном примере для СЭС-5 с 0.106 вырастит до 0.125).

Одновременно отраженные от зеркала-гелиостата 3 лучи 13, падающие на нагреватель 2, нагревают его поверхность до такой температуры, что он сам начинает излучать лучи 14, в основном в инфракрасном диапазоне. Эти лучи 14 падают на фотоэлектрические панели 9 дополнительно к лучам 12 и увеличивают выработку электроэнергии фотоэлектрическими панелями 9.

При концентрации зеркалами-гелиостатами 3 солнечного излучения на нагревателе 2 он, как и абсолютно черное тело, поглощает все излучение, которое на него попадает, и нагревается до определенной абсолютной температуры, визуально превращается в светящийся шар и, согласно закона Планка, создает излучение со спектральной плотностью потока энергии, излучаемой черным телом при достигнутой абсолютной температуре нагрева. Например, для кремниевых фотоэлектрических панелей 9 на расстоянии 100 метров от нагревателя 2 плотность потока 14 излучения дополнительно увеличится 5-7%, и далее убывает обратно пропорционально квадрату расстояния.

У солнечной башенной электростанции могут быть два более простых дополнительных варианта, когда солнечные фотоэлектрические панели 9 выполнены неподвижными и размещены или между соседними зеркалами-гелиостатами 3, или на отдельной площадке вне поля зеркал-гелиостатов. В этих случаях излучение от нагревателя 2 будут воспринимать только те фотоэлектрические панели 9, которые постоянно обращены к нагревателю 2.

Таким образом, применение предлагаемого устройства позволяет достичь поставленной технической задачи в повышении эффективности солнечных башенных электростанций. Технический результат, заключающийся в повышении КПД солнечных башенных электростанций, достигается тем, что в солнечной башенной электростанции собственные нужды покрываются фотоэлектрическими панелями, закрепленными на зеркалах - гелиостатах с возможностью дополнительно воспринимать излучение нагревателя станции.

Похожие патенты RU2709007C1

название год авторы номер документа
ГЕНЕРИРУЮЩАЯ УСТАНОВКА С ДВИГАТЕЛЕМ СТИРЛИНГА 2013
  • Цгоев Руслан Сергеевич
  • Шлыков Евгений Николаевич
  • Козлов Иван Сергеевич
  • Погосян Армен Воваевич
RU2527773C1
ЭНЕРГЕТИЧЕСКАЯ ГЕЛИОУСТАНОВКА 1995
  • Югев Амнон
  • Крупкин Владимир
  • Эпштейн Майкл
RU2137054C1
Гелиокомплекс 1983
  • Сизов Юрий Михайлович
  • Баранов Владимир Кузьмич
  • Саватюгин Михаил Борисович
SU1141274A1
СОЛНЕЧНАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ С ОПТОВОЛОКОННОЙ СИСТЕМОЙ НАВЕДЕНИЯ 2015
  • Соловьев Александр Алексеевич
  • Чекарев Константин Владимирович
  • Малых Юрий Борисович
RU2597729C1
Следящая система для солнечной электростанции 1980
  • Хакимов Равиль Абдурахманович
  • Захидов Ромэн Абдуллаевич
  • Понятов Валерий Павлович
  • Цициков Алексей Григорьевич
  • Золотаренко Владислав Леонидович
SU900262A1
Система управления гелиостатом 1990
  • Трофимов Адольф Иванович
  • Курятов Александр Иванович
SU1784100A3
СОЛНЕЧНАЯ КОМБИНИРОВАННАЯ ЭЛЕКТРОСТАНЦИЯ 1995
  • Волков Э.П.
  • Поливода А.И.
  • Поливода Ф.А.
RU2111422C1
АВТОНОМНАЯ СИСТЕМА ЭЛЕКТРОСНАБЖЕНИЯ НА ОСНОВЕ СОЛНЕЧНОЙ ФОТОЭЛЕКТРИЧЕСКОЙ УСТАНОВКИ 2011
  • Аронова Екатерина Сергеевна
  • Шварц Максим Зиновьевич
RU2479910C1
ВЕТРО-ФОТОЭЛЕКТРИЧЕСКИЙ КОМПЛЕКС С ПНЕВМАТИЧЕСКИМ СОЛНЕЧНЫМ ТРЕКЕРОМ 2023
  • Лаврик Александр Юрьевич
RU2792492C1
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2008
  • Андреев Вячеслав Михайлович
  • Румянцев Валерий Дмитриевич
  • Ионова Евгения Александровна
  • Покровский Павел Васильевич
  • Ларионов Валерий Романович
  • Малевский Дмитрий Андреевич
RU2377472C1

Иллюстрации к изобретению RU 2 709 007 C1

Реферат патента 2019 года СОЛНЕЧНАЯ БАШЕННАЯ ЭЛЕКТРОСТАНЦИЯ

Изобретение относится к энергетике, более конкретно - к возобновляемым источникам энергии на основе солнечных башенных электростанций (гелиотермических электростанций), реализующих термодинамический цикл, например, Ренкина или Стирлинга. В солнечной башенной электростанции, содержащей блок термодинамического цикла, например, Ренкина или Стирлинга, с нагревателем цикла и зеркалами-гелиостатами, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов, и отражения солнечных лучей на нагреватель, расположенный на вершине башни солнечной башенной электростанции, и сеть потребителей, зеркала-гелиостаты снабжены блоком управления приводами, а также солнечными фотоэлектрическими панелями, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату, или фотоэлектрическими панелями, выполненными неподвижными и размещенными, например, между соседними зеркалами-гелиостатами, при этом входы привода азимутального и привода зенитного слежения за Солнцем каждого зеркала-гелиостата соединены с выходами блока управления приводами, первый вход которого подключен к общей выходной цепи фотоэлектрических панелей, а второй вход подключен к сети потребителей. Технический результат заключается в повышении КПД солнечных башенных электростанций. 1 ил.

Формула изобретения RU 2 709 007 C1

Солнечная башенная электростанция, содержащая блок термодинамического цикла, например, Ренкина или Стирлинга, с нагревателем цикла и зеркалами-гелиостатами, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов и отражения солнечных лучей на нагреватель, расположенный на вершине башни солнечной башенной электростанции, сеть потребителей, отличающаяся тем, что зеркала-гелиостаты снабжены блоком управления приводами, а также солнечными фотоэлектрическими панелями, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату, или фотоэлектрическими панелями, выполненными неподвижными и размещенными, например, между соседними зеркалами-гелиостатами, при этом входы привода азимутального и привода зенитного слежения за Солнцем каждого зеркала-гелиостата соединены с выходами блока управления приводами, первый вход которого подключен к общей выходной цепи фотоэлектрических панелей, а второй вход подключен к сети потребителей.

Документы, цитированные в отчете о поиске Патент 2019 года RU2709007C1

ГЕНЕРИРУЮЩАЯ УСТАНОВКА С ДВИГАТЕЛЕМ СТИРЛИНГА 2013
  • Цгоев Руслан Сергеевич
  • Шлыков Евгений Николаевич
  • Козлов Иван Сергеевич
  • Погосян Армен Воваевич
RU2527773C1
АВТОНОМНАЯ СИСТЕМА ЭЛЕКТРОСНАБЖЕНИЯ НА ОСНОВЕ СОЛНЕЧНОЙ ФОТОЭЛЕКТРИЧЕСКОЙ УСТАНОВКИ 2011
  • Аронова Екатерина Сергеевна
  • Шварц Максим Зиновьевич
RU2479910C1
ПОВОРОТНОЕ УСТРОЙСТВО ДЛЯ СОЛНЕЧНОГО ЭНЕРГОМОДУЛЯ 2007
  • Адамов Дмитрий Николаевич
  • Бирюков Олег Юрьевич
  • Гусынин Михаил Васильевич
  • Евтюхин Александр Сергеевич
  • Мороз Александр Иванович
  • Усатый Александр Иванович
RU2381426C2
WO 1990012989 A1, 01.11.1990.

RU 2 709 007 C1

Авторы

Цгоев Руслан Сергеевич

Даты

2019-12-13Публикация

2018-12-25Подача