СПОСОБ ИЗГОТОВЛЕНИЯ ДИЭЛЕКТРИЧЕСКОГО СЛОЯ МДП СТРУКТУР, ОБЛАДАЮЩИХ ЭФФЕКТОМ ПЕРЕКЛЮЧЕНИЯ ПРОВОДИМОСТИ Российский патент 2014 года по МПК H01L21/762 

Описание патента на изобретение RU2529442C2

Изобретение относится к области микро- и наноэлектроники, а именно к способу изготовления диэлектрического слоя МДП структур, обладающих эффектом переключения проводимости на основе нанокомпозитных пленок из оксинитрида кремния со встроенными наноразмерными кластерами кремния, и может быть использовано при изготовлении ячеек памяти в интегральных БИС и СБИС.

В настоящее время большой интерес проявляется к исследованию структур, обладающих S-образными вольт-амперными характеристиками (ВАХ) при одной полярности приложенного напряжения и N-образными при другой (биполярный эффект переключения проводимости). Таким образом, переключение проводящего состояния структуры происходит в зависимости от полярности приложенного напряжения, превышающего определенный порог. Биполярный эффект переключения проводящего состояния наблюдался в структурах типа проводник - диэлектрик - проводник с различными диэлектриками (широкозонными полупроводниками). В частности, в халькогенидных стеклообразных полупроводниках, один из контактных электродов к которому был выполнен из серебра (см. Б.Т.Коломиец, Г.А.Андреева, Н.П.Калмыкова, Э.А.Лебедев, И.А.Таксами, В.Х.Шпунт. Приборы и системы управления, 4, 27, 1980), во фториде эрбия (см. Рожков В.А., Шалимова М.Б. ФТП, 27 (03), 438, 1993), оксиде иттербия (см. Байбурин В.Б., Волков Ю.П., Рожков В.А. ПЖТФ, 24 (12), 21, 1998), оксиде титана (см. D.S.Jeong, H.Schroeder, R.Waser. ESL 10, 51. 2007), в полимерах, в том числе в многослойных, с промежуточной тонкой металлической пленкой (см. J.Campbell Scott, Luisa D.Bozano. Adv. Mater. 19, 1452, 2007), представляющей из себя наноразмерные металлические кластеры. В настоящее время проводятся широкие исследования по разработке приборов RRAM и CBRAM, использующих эффект переключения проводимости в оксиде гафния и оксиде тантала (см. M-J.Lee, Ch.B.Lee, D.Lee et al. Nature Materials, 10, 625, 2011), а также в некоторых других структурах.

Известен способ формирования ячейки памяти, обладающей эффектом переключения проводимости со структурой металл - изолятор - металл (МИМ), в которой в качестве изолятора используются тонкие пленки различных окислов толщиной от 10 нм до нескольких микрон, расположенных между двумя металлическими электродами (см. Дирнлей Дж., Стоунхем А., Морган Д. «УФН, 1974, т.112, вып.1, стр.83-127).

После изготовления подобной структуры она помещается в вакуум и выполняется формовка, состоящая в подаче на электроды постоянного напряжения амплитудой до 15 В. После этого прибор под действием прикладываемого напряжения проявляет N-образные вольт-амперные характеристики, что позволяет использовать такие приборы в качестве элементов памяти. Установлено, что возможность формовки зависит от состава и давления остаточной атмосферы в вакууме, а сама формовка приводит к образованию в структуре каналов, сходных с каналами пробоя между металлическими электродами. Существенным фактором для получения необходимых вольт- амперных характеристик является проникновение молекул остаточной атмосферы в формируемую структуру. Недостатком такого устройства является низкая воспроизводимость характеристик, что связано с плохой контролируемостью условий проведения операции формовки.

Наиболее близким по совокупности признаков к заявленному (прототип) является способ изготовления диэлектрического слоя МДП структур, обладающих эффектом переключения проводимости, в соответствии с которым диэлектрический слой изготавливают путем осаждения кремнийсодержащего композитного материала из смеси моносилана с кислородсодержащими и/или азотсодержащими газами в плазме низкочастотного тлеющего разряда частотой 3-20 кГц (см. патент РФ №2449416 на изобретение, H01L 21/762, 02.09.2010).

Известный способ позволяет формировать диэлектрическую матрицу из диоксида кремния со встроенными кластерами аморфного гидрогенизированного кремния с размерами 1-4 нм, пригодного для изготовления двухэлектродных ячеек энергонезависимой перепрограммируемой памяти со структурой металл-диэлектрик-полупроводник (МДП).

Положительной стороной данного способа является его полная совместимость с оборудованием и материалами, применяемыми в традиционной технологии интегральных микросхем.

Однако недостатком рассмотренного способа изготовления диэлектрического слоя является использование в технологическом цикле токсичного, взрывоопасного и самовоспламеняющегося газа моносилана.

Технической задачей, решаемой предлагаемым изобретением, является создание безопасного способа изготовления диэлектрического слоя МДП структур, обладающих эффектом переключения проводимости на основе нанокомпозитных пленок из оксинитрида кремния со встроенными наноразмерными кластерами кремния, со всеми положительными сторонами способа, изложенного при описании прототипа, но без использования токсичного, взрывоопасного и легковоспламеняющегося газа моносилана.

Указанная техническая задача решается тем, что в известном способе изготовления диэлектрического слоя МДП структур, обладающих эффектом переключения проводимости, путем плазменного нанесения кремнийсодержащего материала, нанесение осуществляют методом магнетронного распыления кремниевой мишени в среде аргона с добавками кислорода и азота с получением нанокомпозитной пленки оксинитрида кремния с включенными наноразмерными кластерами кремния. Нанесение пленки проводят при скорости осаждения 5-7 нм/мин и концентрации кислорода и азота 6-8% об. и 3-5% об. соответственно.

Новым в предлагаемом способе является то, что нанесение осуществляют методом плазменного распыления кремниевой мишени в среде аргона с добавками кислорода и азота с получением нанокомпозитной пленки оксинитрида кремния с включенными кластерами кремния.

Дополнительное отличие заключается в том, что нанесение ведут при скорости осаждения 5-7 нм/мин и концентрации кислорода и азота 6-8% об. и 3-5% об. соответственно.

Заявленное техническое решение неизвестно из уровня техники, что дает основание сделать вывод о его новизне.

Выбор состава и пропорций газовой смеси (а также других технологических параметров) обусловлен оптимизацией свойств диэлектрического слоя.

Кроме того, оно явным образом не вытекает из уровня техники, что говорит о соответствии его критерию изобретательского уровня.

Сущность предлагаемого изобретения поясняется следующим описанием.

Кремниевая подложка устанавливается в рабочей камере установки магнетронного напыления. Источником кремния для формирования нанокомпозитной пленки диэлектрика с включениями наноразмерных кластеров кремния служит мишень из монокристаллического кремния. В установке магнетронного напыления формируется плазма из смеси газов аргона, кислорода и азота. При бомбардировке плазмой кремниевой мишени на подложке осаждается нанокомпозитная пленка, состоящая из оксинитрида кремния SiOxNy с включениями наноразмерных кластеров кремния.

Пример реализации способа изготовления диэлектрического слоя МДП структур, обладающих эффектом переключения проводимости.

На кремниевую подложку p-типа проводимости магнетронным напылением кремния наносят нанокомпозитную пленку толщиной 55-60 нм, состоящую из оксинитрида кремния SiOxNy с включениями наноразмерных кластеров кремния. Давление аргона с кислородом и азотом в рабочей камере поддерживают в пределах 1-5·10-4 Торр, содержание O2 в Ar2 составляет 6-8 объемных %, а N2 составляет 3-5 объемных %.

Химический состав пленки определяют методом Оже-спектроскопии. В зависимости от режимов нанесения содержание кремния в пленке составляет 36-42 ат.%, азота 4-6 ат.% и кислорода 52-57 ат.%.

Для изготовления МДП структуры на осажденной пленке формируют металлические контактные площадки размером от 0,4×0,4 до 5×5 мм2 (фиг.1). При приложении напряжения между подложкой и верхним металлическим электродом наблюдается биполярный бистабильный эффект переключения проводимости, который иллюстируется вольт-амперными характеристиками структур (фиг.2, 3).

Изготовленная исходная МДП структура находится в закрытом состоянии. При подаче отрицательного напряжения к металлическому электроду структуры (прямое включение) ток через структуру не идет. При подаче положительного напряжения к металлическому электроду МДП структуры (обратное включение) при напряжении 2-3 В протекающий через структуру ток резко возрастает до 200 мкА (Фиг.2). При последующем снижении напряжения ток плавно уменьшается примерно по параболическому закону. Это означает, что структура переключилась в открытое состояние.

При подаче отрицательного напряжения к металлическому электроду МДП структуры, находящейся в открытом состоянии, (прямое включение) ток структуры возрастает примерно до 200 мкА (Фиг.3). При напряжении 3-4 В протекающий через структуру ток резко, на 3-4 порядка уменьшается. Структура переходит в закрытое состояние.

При последующем обратном включении закрытая МДП структура вновь переходит в открытое состояние, а при последующем обратном включении структура вновь переходит в закрытое состояние. Таким образом, можно переключать структуру в проводящее или непроводящее состояние приложением напряжения соответствующей полярности и величиной более чем порог переключения.

Состояние проводимости структуры сохраняется в течение длительного времени, минимум год. Факты спонтанного переключения проводимости не наблюдаются.

Характерные пороговые напряжения включения Uon и выключения Uoff составляют величину порядка 2-5 В. Максимальные токи, наблюдаемые в МДП-структурах в открытом состоянии, составляют величины от 1 до 50 мкА.

Из приведенного примера следует, что предлагаемый способ позволяет формировать нанокомпозитные диэлектрические слои из оксинитрида кремния с включенными наноразмерными кластерами кремния, пригодные для изготовления двухэлектродных ячеек энергонезависимой памяти со структурой металл - диэлектрик - полупроводник и перепрограммируемых логических матриц. Особенностью предлагаемого способа в отличие от прототипа является то, что при его реализации не используются токсичные и взрывоопасные газы.

Похожие патенты RU2529442C2

название год авторы номер документа
Способ формирования диэлектрических пленок анодированного сплава алюминий-кремний, обладающих эффектом переключения проводимости 2016
  • Рудый Александр Степанович
  • Бердников Аркадий Евгеньевич
  • Гусев Валерий Николаевич
  • Попов Александр Афанасьевич
  • Черномордик Владимир Дмитриевич
  • Изюмов Михаил Олегович
RU2657096C2
КОНСТРУКЦИЯ ДИЭЛЕКТРИЧЕСКОГО СЛОЯ ДЛЯ МДП CТРУКТУР, ОБЛАДАЮЩИХ ЭФФЕКТОМ ПЕРЕКЛЮЧЕНИЯ ПРОВОДИМОСТИ 2013
  • Орликовский Александр Александрович
  • Рудый Александр Степанович
  • Бердников Аркадий Евгеньевич
  • Попов Александр Афанасьевич
  • Мироненко Александр Александрович
  • Гусев Валерий Николаевич
  • Черномордик Владимир Дмитриевич
RU2563553C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНОГО АНОДА ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ НА ОСНОВЕ ПЛЕНОК НАНОСТРУКТУРИРОВАННОГО КРЕМНИЯ, ПОКРЫТОГО ДВУОКИСЬЮ КРЕМНИЯ 2011
  • Рудый Александр Степанович
  • Бердников Аркадий Евгеньевич
  • Мироненко Александр Александрович
  • Гусев Валерий Николаевич
  • Геращенко Виктор Николаевич
  • Метлицкая Алена Владимировна
  • Скундин Александр Мордухаевич
  • Кулова Татьяна Львовна
RU2474011C1
СПОСОБ ФОРМИРОВАНИЯ ОБЛАДАЮЩЕГО ЭФФЕКТОМ ПЕРЕКЛЮЧЕНИЯ ПРОВОДИМОСТИ ДИЭЛЕКТРИЧЕСКОГО СЛОЯ 2010
  • Орликовский Александр Александрович
  • Бердников Аркадий Евгеньевич
  • Мироненко Александр Александрович
  • Попов Александр Афанасьевич
  • Черномордик Владимир Дмитриевич
  • Перминов Артур Владимирович
RU2449416C1
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА МЕДИЦИНСКОЕ УСТРОЙСТВО, ВХОДЯЩЕЕ В КОНТАКТ С ТКАНЯМИ ТЕЛА 2019
  • Кудашов Иван Александрович
  • Бычков Евгений Александрович
  • Щукин Сергей Игоревич
  • Митрофанов Евгений Аркадьевич
  • Симакин Сергей Борисович
  • Щербачев Андрей Вячеславович
  • Галямов Айрат Зинурович
RU2761440C2
Способ получения активной структуры элемента энергонезависимой резистивной памяти 2020
  • Камаев Геннадий Николаевич
  • Гисматуллин Андрей Андреевич
  • Володин Владимир Алексеевич
  • Гриценко Владимир Алексеевич
RU2749028C1
Способ вакуумного напыления тонкой диэлектрической пленки 1990
  • Горин Анатолий Васильевич
  • Дегтева Валентина Ефимовна
  • Корницкий Ефим Ушерович
  • Кыласов Владимир Александрович
SU1758085A1
СВЧ ГИБРИДНАЯ ИНТЕГРАЛЬНАЯ СХЕМА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2004
  • Берлин Евгений Владимирович
  • Сейдман Лев Александрович
RU2287875C2
СПОСОБ ИЗГОТОВЛЕНИЯ МДП-ЭЛЕМЕНТА ПАМЯТИ 1990
  • Лабудин Г.И.
  • Масловский В.М.
  • Васильев Б.И.
  • Гриценко В.А.
  • Ковтуненко С.А.
RU2006966C1
АКТИВНОЕ ПОЛЕВОЕ ПОЛУПРОВОДНИКОВОЕ ЭЛЕКТРОННОЕ ИЛИ ОПТОЭЛЕКТРОННОЕ УСТРОЙСТВО С ЭНЕРГОНЕЗАВИСИМОЙ ПАМЯТЬЮ И СПОСОБ ИЗГОТОВЛЕНИЯ ТАКОГО УСТРОЙСТВА 2009
  • Ферран Ди Пайва Мартинш Родригу
  • Коррея Фортунату Элвира Мария
  • Нуниш Перейра Луиш Мигел
  • Кандиду Баркинья Педру Мигел
  • Ди Оливейра Коррея Нуну Филипи
RU2498461C2

Иллюстрации к изобретению RU 2 529 442 C2

Реферат патента 2014 года СПОСОБ ИЗГОТОВЛЕНИЯ ДИЭЛЕКТРИЧЕСКОГО СЛОЯ МДП СТРУКТУР, ОБЛАДАЮЩИХ ЭФФЕКТОМ ПЕРЕКЛЮЧЕНИЯ ПРОВОДИМОСТИ

Изобретение относится к области микро- и наноэлектроники. Способ изготовления диэлектрического слоя МДП структур, обладающих эффектом переключения, заключается в нанесении нанокомпозитной пленки оксинитрида кремния с включенными кластерами кремния. Нанесение осуществляют методом плазменного распыления кремниевой мишени при скорости осаждения 5-7 нм/мин в среде аргона с добавками 3-5% об. кислорода и 6-8% об. азота. Техническим результатом изобретения является получение диэлектрических слоев, обладающих эффектом переключения проводимости, полностью совместимых с материалами, а также с большинством технологических воздействий, применяемых в традиционной кремниевой технологии интегральных микросхем. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 529 442 C2

1. Способ изготовления диэлектрического слоя МДП структур, обладающих эффектом переключения проводимости, путем плазменного нанесения кремнийсодержащего материала, отличающийся тем, что нанесение кремнийсодержащего материала осуществляют методом магнетронного распыления кремниевой мишени с использованием плазмы, генерируемой электрическим разрядом постоянного тока в среде аргона с контролируемыми добавками кислорода и азота с получением нанокомпозитной пленки оксинитрида кремния с включенными наноразмерными кластерами кремния.

2. Способ по п.1, отличающийся тем, что нанесение пленки ведут при скорости осаждения 5-7 нм/мин и концентрации кислорода и азота 6-8% об. и 3-5% об. соответственно.

Документы, цитированные в отчете о поиске Патент 2014 года RU2529442C2

СПОСОБ ФОРМИРОВАНИЯ ОБЛАДАЮЩЕГО ЭФФЕКТОМ ПЕРЕКЛЮЧЕНИЯ ПРОВОДИМОСТИ ДИЭЛЕКТРИЧЕСКОГО СЛОЯ 2010
  • Орликовский Александр Александрович
  • Бердников Аркадий Евгеньевич
  • Мироненко Александр Александрович
  • Попов Александр Афанасьевич
  • Черномордик Владимир Дмитриевич
  • Перминов Артур Владимирович
RU2449416C1
ЭЛЕМЕНТ УСТРОЙСТВА ПАМЯТИ СО СТРУКТУРОЙ МЕТАЛЛ-ИЗОЛЯТОР-МЕТАЛЛ 1997
  • Мордвинцев В.М.
  • Левин В.Л.
  • Шумилова Т.К.
  • Савасин В.Л.
  • Кудрявцев С.Е.
RU2108629C1
Алешин А.Н., Александрова Е.Л
ФТТ, 2008, том 50, вып
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
J
Campbell Scott et al
Nonvolatile Memory Elements Based on Organic Materials
ADV
MATER, 19, 2007, p
Ножной станок для выделки деревянных сапожных гвоздей 1923
  • Шумилов В.И.
SU1452A1
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
US 8183121 B2, 22.05.2012.

RU 2 529 442 C2

Авторы

Бердников Аркадий Евгеньевич

Геращенко Виктор Николаевич

Гусев Валерий Николаевич

Мироненко Александр Александрович

Орликовский Александр Александрович

Попов Александр Афанасьевич

Рудый Александр Степанович

Даты

2014-09-27Публикация

2012-07-10Подача