СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС ПОЛУПРОВОДНИКОВОГО ПРИБОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2014 года по МПК G01R31/00 

Описание патента на изобретение RU2529761C1

Изобретение относится к измерительной технике, в частности к технике измерения тепловых параметров полупроводниковых приборов после изготовления, а также для неразрушающего входного контроля при производстве радиоэлектронной аппаратуры.

Известен способ измерения теплового сопротивления переход-корпус, в котором полупроводниковый кристалл нагревают путем пропускания через него постоянного тока I0 заданной амплитуды, измеряют в процессе нагревания значение его температурочувствительного параметра, в качестве которого используют прямое падение напряжения на кристалле Uп, и одновременно измеряют температуру основания корпуса Тк прибора в выбранной точке. Запоминают эти значения, получая их зависимости от времени t. Прекращают нагрев полупроводникового кристалла при достижении температуры Тк заданного значения и в режиме естественного охлаждения при подаче на кристалл коротких измерительных импульсов тока с амплитудой I0 и скважностью, не влияющих на тепловое равновесие прибора, измеряют и запоминают значения температурочувствительного параметра и температуры основания корпуса, получая зависимости Uп(t) и Tk(t) на интервале охлаждения. При этом длительность интервала охлаждения выбирают из условия безусловного выполнения 1>>3τ, где τ - наибольшая тепловая постоянная конструкции прибора, определяют момент динамического равновесия t1 на интервале нагрева и по полученным зависимостям вычисляют тепловое сопротивление переход-корпус в данной точке t1 (Патент РФ №2240573, G01R3 1/16, опубл. 20.11.2004, БИ №13, 2007 г.).

Недостатком известного способа является низкая точность измерения теплового сопротивления. Точность способа зависит от точности измерения температуры корпуса, которая измеряется в одной точке. Между тем температура корпуса может иметь значительный градиент по поверхности и существенно зависеть от условий охлаждения корпуса прибора.

Известно устройство для измерения тепловых параметров двухполюсников методом сравнения содержащее, источник тока, образцовый двухполюсник, амперметр, клеммы для подключения контролируемого двухполюсника и вольтметр для измерения напряжения на контролируемом двухполюснике, причем выход источника тока соединен с одной из клемм для подключения контролируемого двухполюсника, один из полюсов амперметра соединен с соответствующим выводом образцового двухполюсника, а второй полюс амперметра и вторая клемма для подключения контролируемого двухполюсника соединены с общей шиной, дополнительно k-1 образцовых двухполюсников с известным и одинаковым тепловым сопротивлением и однополюсный k-позиционный переключатель, при этом соответствующие выводы дополнительных k-1 образцовых двухполюсников соединены с соответствующим полюсом амперметра, а вторые выводы всех образцовых двухполюсников, каждый по отдельности, соединены с соответствующими контактами однополюсного k-позиционного переключателя, общий полюс которого соединен с выходом источника тока (Патент РФ №2227922, G01R 31/26, опубл. 27.04.2004). Недостатком известного устройства является низкое быстродействие, поскольку необходимо производить измерения теплового сопротивления нескольких дополнительных образцовых устройств и сравнивать их тепловое сопротивление с контролируемым образцом, это увеличивает время для проведения измерения и уменьшает быстродействие известного устройства.

Наиболее близким техническим решением к предлагаемому способу и устройству является способ, приведенный в патенте на устройство для измерения теплового сопротивления переход-корпус полупроводникового прибора, включающий воздействие на контролируемый полупроводниковый прибор нагретой жидкостью с заданной температурой путем погружения контролируемого полупроводникового прибора в нагретую жидкость, определение зависимости выходного напряжения контролируемого полупроводникового прибора от температуры нагрева контролируемого полупроводникового прибора, определение теплового сопротивления переход-корпус контролируемого полупроводникового прибора с учетом параметров теплоемкости контролируемого полупроводникового прибора, значений температур и времени нагрева между этими температурами контролируемого полупроводникового прибора. Устройство согласно прототипу содержит контактную колодку с клеммами для подключения контролируемого полупроводникового прибора, два устройства сравнения, источник опорных напряжений, селектор, генератор тактовых импульсов, источник питания, счетчик, вход которого подключен к выходу селектора, один из входов которого подключен к выходу генератора тактовых импульсов, а выходы источника опорных напряжений подключены соответственно к входам устройств сравнения, другие входы устройств сравнения соединены между собой, устройство также содержит нагреватель, вентилятор, термометр, сосуд с диэлектрической жидкостью, усилитель, переключатель, вольтметр, источник тока, выход которого подключен к входу усилителя и контактной колодке с клеммами для подключения контролируемого полупроводникового прибора, а выход усилителя подключен к третьему контакту переключателя, первый контакт которого подключен к вольтметру, второй контакт переключателя подключен к соединенным входам устройств сравнения, а выходы устройств сравнения подключены к входам селектора соответственно, термометр, вентилятор и нагреватель погружены в сосуд с диэлектрической жидкостью, входы вентилятора и нагревателя соединены между собой и подключены к источнику питания (см. Патент РФ №2392631, G01R 31/26, опубл. 20.06.2010, БИ №17 2010 г.).

Недостатком известного способа и устройства по прототипу является низкая точность измерения теплового сопротивления и низкое быстродействие. Точность способа зависит от точности срабатывания устройств сравнения, а как показано в литературе (Алексенко А.Г. и др. Применение прецизионных аналоговых ИС.- М.: Радио и связь, 1981, стр. 172) при медленных процессах компараторы, которые используются в качестве устройств сравнения, дают большую ошибку по времени включения. Кроме того, измерение времени нагрева делается один раз, и нет возможности проводить статистическую обработку результатов измерений, а известно, что статистическая обработка результатов измерения уменьшает влияние случайных факторов и помех и повышает точность измерения. Низкое быстродействие способа связано с тем, что измерение происходит в два этапа: первый этап - определение зависимости выходного напряжения контролируемого полупроводникового прибора от температуры нагрева контролируемого полупроводникового прибора и второй этап - собственно измерение времени нагрева и вычисление теплового сопротивления переход-корпус.

Технический результат в предлагаемом способе и устройстве - повышение быстродействия и точности измерения теплового сопротивления переход-корпус полупроводникового прибора.

Технический результат в способе для измерения теплового сопротивления переход-корпус полупроводникового прибора, включающем воздействие на контролируемый полупроводниковый прибор нагретой жидкостью с заданной температурой, определение зависимости выходного напряжения контролируемого полупроводникового прибора от температуры нагрева контролируемого полупроводникового прибора, определение теплового сопротивления переход-корпус контролируемого полупроводникового прибора с учетом параметров теплоемкости контролируемого полупроводникового прибора, значений температур и времени нагрева между этими температурами контролируемого полупроводникового прибора, достигается тем, что воздействие нагретой жидкостью на контролируемый полупроводниковый прибор осуществляют посредством струи нагретой жидкости, фиксируя при этом n значений выходного напряжения контролируемого полупроводникового прибора через равные промежутки времени, фиксируя при этом время начала процесса и фиксируя время конца каждого последующего временного интервала, определение зависимости выходного напряжения контролируемого полупроводникового прибора от температуры нагрева контролируемого полупроводникового прибора осуществляют по двум крайним температурам, соответствующим началу и концу процесса нагрева контролируемого полупроводникового прибора, и на основе этой зависимости определяют температурный коэффициент напряжения контролируемого полупроводникового прибора, n значений выходного напряжения контролируемого полупроводникового прибора преобразуют в n значений температур в конце каждого временного интервала путем деления каждого измеренного напряжения на температурный коэффициент напряжения, определение теплового сопротивления переход-корпус контролируемого полупроводникового прибора осуществляет n раз с учетом n временных интервалов времени нагрева полупроводникового прибора, n значений температур контролируемого полупроводникового прибора, определяемых в конце каждого временного интервала, далее определяют среднее значение теплового сопротивления переход-корпус контролируемого полупроводникового прибора по формуле:

R = ( i = 0 n ( t i t 0 ) C ln ( T i T 0 ) ) 1 n ,

где R - тепловое сопротивление переход-корпус контролируемого полупроводникового прибора,

С - теплоемкость контролируемого полупроводникового прибора,

t0 - время начала процесса нагрева контролируемого полупроводникового прибора,

ti=(Δt·i)-i - временной интервал в конце которого измеряется напряжение на выходе значения температуры контролируемого полупроводникового прибора,

Δt - значение временного интервала,

Т0 - значения температуры контролируемого полупроводникового прибора перед началом измерения,

Ti - значения температуры контролируемого полупроводникового прибора в конце i временного интервала,

i и n - натуральный ряд чисел.

Технический результат в устройстве для измерения теплового сопротивления переход-корпус полупроводникового прибора, содержащем контактную колодку с клеммами для подключения контролируемого полупроводникового прибора, температурный датчик, источник питания, источник тока, выход которого подключен к контактной колодке с клеммами для подключения контролируемого полупроводникового прибора, достигается тем, что введены последовательно соединенные микроконтроллер и компьютер, форсунка со схемой включения, оптический излучатель и оптически связанный с ним оптический приемник, выход которого подключен к первому входу микроконтроллера, второй выход которого подключен к форсунке со схемой включения, второй вход микроконтроллера соединен с выходом источника тока, третий вход микроконтроллера соединен с температурным датчиком, а выход источника питания соединен с оптическим излучателем.

На фиг.1 представлена структурная схема устройства для измерения теплового сопротивления переход-корпус с подключенным контролируемым полупроводниковым прибором. На фиг.2 представлено пространственное расположение элементов изображения на фиг.1. На фиг.3, 4 представлены временные диаграммы работы устройства. На фиг.5 представлена осциллограмма выходных сигналов на выходе контролируемого полупроводникового прибора и выходе оптического приемника. На фиг.6 представлен алгоритм работы микроконтроллера. Устройство для измерения теплового сопротивления переход-корпус содержит: контактную колодку 1 с клеммами для подключения контролируемого полупроводникового прибора, датчик температуры 2, источник питания 3, источник тока 4, выход которого соединен с контактной колодкой 1 для подключения контролируемого полупроводникового прибора и вторым входом микроконтроллера 5, компьютер 6, вход которого соединен с первым выходом микроконтроллера 5, форсунка со схемой включения 7, подключенная к второму выходу микроконтроллера 5, оптический излучатель 8, вход которого соединен с выходом источника питания 3, оптический приемник 9, выход которого соединен с первым входом микроконтроллера 5, третий вход которого соединен с выходом датчика температуры 2, 10 - контролируемый полупроводниковый прибор.

В качестве контролируемого полупроводникового прибора 10 был использован транзистор типа КТ805. В качестве выходного напряжения контролируемого полупроводникового прибора использовалось прямое падение напряжения на эмиттерном переходе. В качестве датчика температуры 2 использовался бескорпусной диод КД911 с малой температурной постоянной времени, датчик температуры 2 приклеивается на нижнюю поверхность контролируемого полупроводникового прибора с использованием эпоксидного клея. Источник питания 3 - GPS3030D. Источник тока 4 был выполнен по схеме (см. Алексенко А.Г. и др. Применение прецизионных аналоговых ИС.- М.: Радио и связь, 1981, стр. 218 рис. 6. 6а). В качестве микроконтроллера 5 использовалась микросхема Atmega 128 производства фирмы «ATMEL», в состав которой входит усилитель, коммутатор, аналого-цифровой преобразователь, память для программы и сохранения данных, полученных при измерении, интерфейс для соединения с компьютером. Микроконтроллер 5 соединен с компьютером 6 интерфейсом RS232 для передачи данных. Компьютер 6 с процессором Intel Pentium III 737 МГц с СОМ портом. В качестве форсунки со схемой включения 7 использовался электронасос ЭНЦ 2,5-12 с управлением от электронных ключей на транзисторах КТ829. Выходное сопло форсунки 7 располагалось напротив нижней поверхности контролируемого полупроводникового прибора на расстоянии 15-20 мм. В качестве оптического излучателя 8 был применен инфракрасный светодиод АЛ107Б, оптический приемник 9 - фотодиод марки ФД265-01. Оптические оси оптического излучателя 8 и оптического приемника 9 расположены под таким углом, чтобы инфракрасные лучи, излучаемые оптическим передатчиком, отражались от нижней поверхности контролируемого полупроводникового прибора 10 и попадали на оптический приемник 9, например под углом 160°-170° друг к другу. В качестве жидкости с температурой Тn использовалась полиметилсилоксановая жидкость марки ПМС-5 по ГОСТ 13032-77 с изм. 1-3 (см. также «Кремнийорганические продукты, выпускаемые в СССР», Каталог-справочник. М.: Химия, 1970, с. 52). Жидкости типа ПМС обладают высокими диэлектрическими свойствами и химически инертны даже при высоких температурах.

Рассмотрим осуществление способа для измерения теплового сопротивления переход-корпус и работу устройства, его реализующего. Контролируемый полупроводниковый прибор 10 подключается к контактной колодке 1 так, чтобы нижняя поверхность контролируемого полупроводникового прибора 10 для отвода тепла была обращена в стороны сопла форсунки 7. Микроконтроллер 5 программируется управляющей программой, алгоритм работы которой показан на фиг.6. В программе микроконтроллера 5 устанавливаются следующие параметры: n - количество измерений, Δt - значение временного интервала. После включения устройства некоторое время, например 500-700 миллисекунд, длится переходный процесс и установления стабильного режима работы устройства. После окончания переходного процесса через колодку 1 с установленным в ней контролируемым полупроводниковым прибором 10 протекает ток от источника тока 4. Одновременно включается источник питания 3, который питает оптический излучатель 8, его лучи после отражения от контролируемого полупроводникового прибора 10, подключенного к контактной колодке 1, попадают на оптический приемник 9, который преобразует их в электрический сигнал и вводит эти сигналы в микроконтроллер 5. Датчик температуры 2 измеряет температуру Т0 в точке t0 и передает ее в микроконтроллер 5, где она запоминается в памяти микроконтроллера 5. После окончания переходного процесса сигнал со второго выхода микроконтроллера 5 включает форсунку со схемой включения 7. Жидкость с температурой Тn, температура которой Тn>>Т0, поступает в форсунку 7 и через ее выходное сопло посредством струи на поверхность контролируемого полупроводникового прибора 10, установленного в колодке 1. В результате быстрого нагрева контролируемого полупроводникового прибора напряжение на его выходе начинает падать, поскольку р-n переход имеет отрицательную зависимость прямого напряжения от температуры. График изменения напряжения Uвых на выходе контролируемого полупроводникового прибора 10 показан на фиг.3. Как только первые капли струи жидкости с температурой Тn попадают на поверхность контролируемого полупроводникового прибора 10, световой луч между оптическим излучателем 8 и оптическим приемником 9 ослабляется и происходит резкое изменение уровня сигнала на выходе оптического приемника 9, которое фиксируется микроконтроллером 5 на первом входе. На осциллограмме фиг.5, полученной с помощью цифрового осциллографа ADS2111М, показаны сигналы с выхода контролируемого полупроводникового прибора 10 (верхняя осциллограмма) и сигналы с выхода оптического приемника 9 (нижняя осциллограмма). Перепад напряжения с выхода оптического приемника 9 поступает на первый вход микроконтроллера 5 и преобразуется в команду для запуска программы измерения напряжения на выходе контролируемого полупроводникового прибора 10. На временной оси фиг.3 этот момент времени обозначен t0, микроконтроллер 5 формирует интервалы времени Δt, в конце каждого из которых происходит измерение напряжения на выходе контролируемого полупроводникового прибора 10 и сохранение значений напряжений в памяти микроконтроллера 5 в виде массива напряжений Мu. Процесс измерения происходит до точки tn. После измерения напряжения в точке tn происходит измерение температуры Тn с помощью датчика температуры 2 и запоминание этого значения в памяти микроконтроллера 5. Вычисление температурного коэффициента напряжения Кткн осуществляется в соответствии с ГОСТ 19656.15-84 Диоды полупроводниковые СВЧ. Методы измерения теплового сопротивления переход-корпус и импульсного теплового сопротивления. Приложение 1, стр. 13. Программа микроконтроллера 5 вычисляет температурный коэффициент напряжения Кткн по формуле:

K т к н = U 0 U n T 0 T n  (1) ,

где Кткн - температурный коэффициент напряжения,

U0 - напряжение на выходе контролируемого полупроводникового прибора перед началом измерения, в момент времени t0,

Un - напряжение на выходе контролируемого полупроводникового прибора в конце процесса измерения, в момент времени tn,

Т0 - температура контролируемого полупроводникового прибора перед началом измерения, в момент времени t0,

Tn - температура контролируемого полупроводникового прибора в в конце процесса измерения, в момент времени tn.

После вычисления температурного коэффициента напряжения каждый член массива Мu напряжений в памяти микроконтроллера 5 преобразуется в массив температур Mt по формуле:

M t = U i K Т К Н  (2) .

Поскольку работа программы микроконтроллера 5 синхронизируется с помощью кварцевого резонатора, временные интервалы Δt в программе микроконтроллера 5 задаются с высокой точностью, после преобразования по формуле 2 получаем массив температур Mt, в котором каждая точка графика фиг.4 определяется значениями температуры р-n перехода контролируемого полупроводникового прибора 10 Тpn и времени t. Причем время будет определяться по номеру члена массива. Например, мы устанавливаем в программе микроконтроллера 5 временной интервал Δt между измерениями, равный 50 миллисекунд, тогда t0=0, t1=50Mceк, t2=100Mceл, … ti=50·i мсек, где i - натуральный ряд чисел. После преобразования полученный массив Mt передается из микроконтроллера в компьютер 6 с помощью интерфейса RS232 и используется для расчета теплового сопротивления переход-корпус. Расчет теплового сопротивления производится в компьютере 6 в программе Microsoft Excel n раз с последующим вычислением средней величины по формуле:

R = ( i = 0 n ( t i t 0 ) C ln ( T i T 0 ) ) 1 n ,

где R - тепловое сопротивление переход-корпус контролируемого полупроводникового прибора,

С - теплоемкость контролируемого полупроводникового прибора,

t0 - время начала процесса нагрева контролируемого полупроводникового прибора,

ti=(Δt·i)-i - временной интервал, в конце которого измеряется напряжение на выходе значения температуры контролируемого полупроводникового прибора,

Δt - значение временного интервала,

Т0 - температура контролируемого полупроводникового прибора перед началом измерения,

Ti - температура контролируемого полупроводникового прибора в конце i временного интервала,

i и n - натуральный ряд чисел.

Заявляемые способ и устройство позволяют увеличить точность измерения теплового сопротивления переход-корпус, поскольку в процессе измерения теплового сопротивления используется n измерений с последующей статистической обработкой путем вычисления среднего значения. Статистическая обработка результатов измерения уменьшает влияние случайных факторов и помех и повышает точность измерения. Заявляемые способ и устройство позволяют уменьшить время измерения теплового сопротивления переход-корпус, поскольку измерение температурного коэффициента напряжения и собственно измерение теплового сопротивления происходят в одном цикле, тогда как в прототипе необходимы два цикла измерения.

Похожие патенты RU2529761C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ МЕЖДУ КОРПУСОМ ПОЛУПРОВОДНИКОВОГО ПРИБОРА И РАДИАТОРОМ ОХЛАЖДЕНИЯ 2018
  • Солдатов Алексей Иванович
  • Солдатов Андрей Алексеевич
  • Васильев Иван Михайлович
  • Шульгина Юлия Викторовна
  • Костина Мария Алексеевна
  • Сорокин Павел Владимирович
RU2687300C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2009
  • Мальцев Иван Алексеевич
  • Мальцев Алексей Александрович
RU2392631C1
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ МЕЖДУ КОРПУСОМ ПОЛУПРОВОДНИКОВОГО ПРИБОРА И РАДИАТОРОМ ОХЛАЖДЕНИЯ 2018
  • Солдатов Алексей Иванович
  • Солдатов Андрей Алексеевич
  • Васильев Иван Михайлович
  • Шульгина Юлия Викторовна
  • Костина Мария Алексеевна
  • Сорокин Павел Владимирович
RU2686859C1
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ДВУХПОЛЮСНИКОВ С ИЗВЕСТНЫМ ТЕМПЕРАТУРНЫМ КОЭФФИЦИЕНТОМ СОПРОТИВЛЕНИЯ 2000
  • Сергеев В.А.
  • Васильев А.Н.
RU2167429C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПЕРЕХОДНЫХ ТЕПЛОВЫХ ХАРАКТЕРИСТИК СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ 2013
  • Сергеев Вячеслав Андреевич
  • Черторийский Алексей Аркадьевич
  • Беринцев Алексей Валентинович
RU2523731C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ 2000
  • Сергеев В.А.
RU2174692C1
СПОСОБ ИЗМЕРЕНИЯ ПЕРЕХОДНОЙ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ 2020
  • Сергеев Вячеслав Андреевич
  • Юдин Виктор Васильевич
  • Ламзин Владимир Александрович
RU2766066C1
Способ контроля качества сборки модуля с силовым полупроводниковым прибором 1986
  • Антюхин Валентин Михайлович
  • Лаужа Гундис Вигуртович
  • Узарс Валдис Янович
  • Феоктистов Валерий Павлович
  • Храмцов Владимир Николаевич
  • Чаусов Олег Георгиевич
SU1448313A1
ЭКСПРЕСС-МЕТОД ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС СИЛОВЫХ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ В КОРПУСНОМ ИСПОЛНЕНИИ 2003
  • Флоренцев С.Н.
  • Гарцбейн Валерий Михайлович
  • Иванов С.В.
  • Марамыгин Н.Ф.
  • Романовская Л.В.
RU2240573C1
УСТРОЙСТВО ДЛЯ ОТБРАКОВКИ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ 2001
  • Сергеев В.А.
RU2187126C1

Иллюстрации к изобретению RU 2 529 761 C1

Реферат патента 2014 года СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС ПОЛУПРОВОДНИКОВОГО ПРИБОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к измерительной технике, в частности к технике измерения тепловых параметров полупроводниковых приборов после изготовления, а также для неразрушающего входного контроля при производстве радиоэлектронной аппаратуры. Технический результат - повышение точности и быстродействия измерения теплового сопротивления переход-корпус полупроводникового прибора. Технический результат в способе для измерения теплового сопротивления переход-корпус полупроводникового прибора достигается воздействием на контролируемый полупроводниковый прибор нагретой жидкостью посредством струи. При этом определяют n значений выходного напряжения контролируемого полупроводникового прибора через равные промежутки времени. Полученные данные сохраняются в виде массива напряжений. По полученным данным вычисляют температурный коэффициент напряжения контролируемого полупроводникового прибора. Массив напряжений преобразуют в массив температур путем деления членов массива напряжений на температурный коэффициент напряжения. Определение теплового сопротивления переход-корпус контролируемого полупроводникового прибора осуществляет n раз с использованием данных массива температур, теплоемкости, величины временных промежутков с последующим определением среднего значения теплового сопротивления. Технический результат в устройстве для измерения теплового сопротивления переход-корпус полупроводникового прибора, содержащем контактную колодку с клеммами для подключения контролируемого полупроводникового прибора, температурный датчик, источник питания, источник тока, выход которого подключен к контактной колодке с клеммами, достигается тем, что в него введены последовательно соединенные микроконтроллер и компьютер, форсунка со схемой включения, оптический излучатель и оптически связанный с ним оптический приемник, выход которого подключен к первому входу микроконтроллера, второй выход которого подключен к форсунке со схемой включения, второй вход микроконтроллера соединен с выходом источника тока, третий вход микроконтроллера соединен с датчиком температуры, а выход источника питания соединен с оптическим излучателем. 2 н.п. ф-лы, 6 ил.

Формула изобретения RU 2 529 761 C1

1. Способ измерения теплового сопротивления переход-корпус полупроводникового прибора, включающий воздействие на контролируемый полупроводниковый прибор нагретой жидкостью с заданной температурой, определение зависимости выходного напряжения контролируемого полупроводникового прибора от температуры нагрева контролируемого полупроводникового прибора, определение теплового сопротивления переход-корпус контролируемого полупроводникового прибора с учетом параметров теплоемкости контролируемого полупроводникового прибора, значений температур и времени нагрева между этими температурами контролируемого полупроводникового прибора, отличающийся тем, что воздействие нагретой жидкостью на контролируемый полупроводниковый прибор осуществляют посредством струи нагретой жидкости, фиксируя при этом n значений выходного напряжения контролируемого полупроводникового прибора через равные промежутки времени, фиксируя при этом время начала процесса и фиксируя время конца каждого последующего временного интервала нагрева контролируемого полупроводникового прибора, определение зависимости выходного напряжения контролируемого полупроводникового прибора от температуры нагрева контролируемого полупроводникового прибора осуществляют по двум крайним температурам, соответствующим началу и концу процесса нагрева контролируемого полупроводникового прибора, и на основе этой зависимости определяют температурный коэффициент напряжения контролируемого полупроводникового прибора, n значений выходного напряжения контролируемого полупроводникового прибора преобразуют в n значений температур в конце каждого временного интервала путем деления каждого измеренного выходного напряжения на температурный коэффициент напряжения, определение теплового сопротивления переход-корпус контролируемого полупроводникового прибора осуществляют n раз с учетом n временных интервалов времени нагрева полупроводникового прибора, n значений температур контролируемого полупроводникового прибора, определяемых в конце каждого временного интервала, далее определяют среднее значение теплового сопротивления переход-корпус контролируемого полупроводникового прибора по формуле:
R = ( i = 0 n ( t i t 0 ) C ln ( T i T 0 ) ) 1 n ,
где
R - тепловое сопротивление переход-корпус контролируемого полупроводникового прибора,
С - теплоемкость контролируемого полупроводникового прибора,
t0 - время начала процесса нагрева контролируемого полупроводникового прибора,
ti=(Δt·i) - временные интервалы в процессе нагрева контролируемого полупроводникового прибора,
Δt - значение временного интервала,
Т0 - значения температуры контролируемого полупроводникового прибора перед началом измерения,
Ti - значения температуры контролируемого полупроводникового прибора в конце i временного интервала,
i - текущий индекс, изменяется от 0 до n,
i и n - натуральный ряд чисел.

2. Устройство для измерения теплового сопротивления переход-корпус полупроводникового прибора, содержащее контактную колодку с клеммами для подключения контролируемого полупроводникового прибора, датчик температуры, источник питания, источник тока, выход которого подключен к контактной колодке с клеммами для подключения контролируемого полупроводникового прибора, отличающееся тем, что в него введены последовательно соединенные микроконтроллер и компьютер, форсунка со схемой включения, оптический излучатель и оптически связанный с ним оптический приемник, выход которого подключен к первому входу микроконтроллера, второй выход которого подключен к форсунке со схемой включения, второй вход микроконтроллера соединен с выходом источника тока, третий вход микроконтроллера соединен с датчиком температуры, а выход источника питания соединен с оптическим излучателем.

Документы, цитированные в отчете о поиске Патент 2014 года RU2529761C1

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2009
  • Мальцев Иван Алексеевич
  • Мальцев Алексей Александрович
RU2392631C1
RU 2012138818 A (Беспалов Н.Н., Лысенков А.Е.) 27.08.2013
Ленточный конвейер 1958
  • Пертен Ю.А.
SU121374A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОВЫХ ПАРАМЕТРОВ ДВУХПОЛЮСНИКОВ МЕТОДОМ СРАВНЕНИЯ 2002
  • Сергеев В.А.
RU2227922C2
ЭКСПРЕСС-МЕТОД ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС СИЛОВЫХ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ В КОРПУСНОМ ИСПОЛНЕНИИ 2003
  • Флоренцев С.Н.
  • Гарцбейн Валерий Михайлович
  • Иванов С.В.
  • Марамыгин Н.Ф.
  • Романовская Л.В.
RU2240573C1

RU 2 529 761 C1

Авторы

Мальцев Иван Алексеевич

Мальцев Алексей Александрович

Даты

2014-09-27Публикация

2013-04-22Подача