СКВАЖИННЫЙ ГАЗОПЕСОЧНЫЙ СЕПАРАТОР Российский патент 2014 года по МПК E21B43/38 

Описание патента на изобретение RU2529978C1

Изобретение относится к оборудованию для сепарации многофазных сред и может быть применено для сепарации жидкостей в различных отраслях народного хозяйства, в том числе при добыче нефти в качестве скважинного устройства для очистки флюида в сочетании с насосами для добычи нефти при эксплуатации скважин с высоким содержанием механических примесей в добываемом флюиде.

Известно скважинное устройство, принятое авторами в качестве прототипа, для очистки флюида, содержащее цилиндрический корпус с входными отверстиями, размещенные в верхней части корпуса сепарирующий узел в виде полого шнека с профилированной спиралью и патрубок для отвода жидкости, размещенную в нижней части корпуса вихревую камеру и присоединенный к нижней части корпуса отстойник для сбора механических примесей (см. RU 114720 U1, МПК E21B 43/38, опуб. 10.04.2012).

Недостатками известного устройства для очистки флюида являются:

- низкая эффективность из-за больших гидравлических потерь в каналах конусообразного полого шнека;

- перетоки жидкости в затрубном пространстве;

- сложность конструкции.

Технический результат заключается в повышении эффективности работы скважинного газопесочного сепаратора и упрощении конструкции.

Указанный технический результат достигается тем, что скважинный газопесочный сепаратор содержит цилиндрический корпус с входными отверстиями, в верхней части которого концентрично установлен цилиндрический патрубок, содержащий сепарирующий узел в виде полого шнека с профилированной спиралью, спиральный канал, сообщающий входные отверстия с полостью усеченного конуса, вихревую камеру в виде полого усеченного конуса, концентрично установленную в нижней части корпуса под патрубком с сепарирующим узлом, и присоединенный к нижней части корпуса отстойник для сбора механических примесей, при этом согласно полезной модели профилированная спираль полого шнека выполнена двухзаходной, а наружная поверхность профилированной двухзаходной спирали имеет спиральную поверхность контакта с внутренней цилиндрической поверхностью корпуса, образуя двухзаходный спиральный канал, сообщающий входные отверстия с внутренней полостью корпуса выше вихревой камеры, при этом профилированная двухзаходная спираль расположена на полом шнеке ниже входных отверстий в корпусе сепаратора на расстоянии, превышающем один наружный диаметр шнека, а на цилиндрическом корпусе выше входных отверстий установлен герметизирующий элемент, перекрывающий затрубное пространство, при этом геометрические размеры спиральных каналов и вихревой камеры подобраны в зависимости от дебита скважины и подачи применяемого скважинного насоса.

Кроме того, технический результат достигается тем, что сверху и снизу герметизирующего элемента установлены защитные центраторы, предотвращающие повреждение герметизирующего элемента при спуске и подъеме сепаратора.

На фиг.1 показан общий вид газопесочного сепаратора.

На фиг.2 - газопесочный сепаратор, у которого профилированная двухзаходная спираль расположена на полом шнеке ниже входных отверстий в корпусе сепаратора на расстоянии, превышающем один наружный диаметр шнека.

На фиг.3 - газопесочный сепаратор, у которого на цилиндрическом корпусе выше входных отверстий установлен герметизирующий элемент, перекрывающий затрубное пространство.

На фиг.4 - газопесочный сепаратор, у которого сверху и снизу герметизирующего элемента установлены защитные центраторы, предотвращающие повреждение герметизирующего элемента при спуске и подъеме сепаратора.

На фиг.5 - разрез А-А по фиг.4.

На фиг.6 - разрез Б-Б по фиг.4.

На фигурах отдельными позициями обозначены:

1 - корпус;

2 - входные отверстия;

3 - цилиндрический патрубок;

4 - полый шнек;

5 - профилированная спираль;

6 - спиральные каналы;

7 - вихревая камера;

8 - полый усеченный конус;

9 - отстойник;

10 - герметизирующий элемент;

11 - обсадная колонна;

12 - затрубное пространство;

13 - верхний защитный центратор;

14 - нижний защитный центратор.

Скважинный газопесочный сепаратор по фиг.1-4 содержит цилиндрический корпус 1 с входными отверстиями 2, сепарирующий узел в виде полого шнека 4 с профилированной спиралью 5. В верхней части корпуса 1 аксиально установлен цилиндрический патрубок 3 для отвода жидкости. Цилиндрический патрубок 3 в верхней своей части имеет наружную резьбу, а корпус 1 в верхней своей части имеет внутреннюю резьбу, для соответствующего аксиального закрепления. На нижней части патрубка 3 концентрично размещен сепарирующий узел. В нижней части корпуса 1 под сепарирующим узлом концентрично установлена вихревая камера 7, выполненная в виде полого усеченного конуса 8. К нижней части корпуса 1 присоединен отстойник 9 для сбора механических примесей.

На фиг.3 и 4 выше входных отверстий 2 установлен герметизирующий элемент 10, перекрывающий затрубное пространство 12 посредством плотного контакта с обсадной колонной 11.

На фиг.4 для предотвращения повреждения герметизирующего элемента 10 при спуске и подъеме сепаратора устанавливаются верхний 13 и нижний 14 защитные центраторы.

При этом профилированная двухзаходная спираль 5 расположена на полом шнеке 4 ниже входных отверстий 2 в корпусе сепаратора на расстоянии L, превышающем один наружный диаметр D шнека.

Скважинный газопесочный сепаратор работает следующим образом. Пластовая жидкость с механическими примесями поступает внутрь корпуса 1 через входные отверстия 2, далее поступает в спиральные каналы 6, образованные профилированной спиралью сепарирующего узла, выполненного в виде шнека 4. На выходе из шнека 4 в полости вихревой камеры 7 формируется контур циркуляции с вращательным движением жидкости. Твердые частицы за счет центробежных сил оттесняются к стенкам вихревой камеры 7. Под действием гравитационных сил твердые частицы смещаются вниз к усеченному конусу 8 и далее оседают в отстойнике 9. Очищенная от механических примесей жидкость поступает в патрубок 3 и далее движется вверх к входу скважинного насоса (на фиг. не показан).

Выбор оптимальных геометрических размеров для каналов 6, размеров вихревой камеры 7 зависит от дебита скважины и, соответственно, от подачи насоса. При решении задачи по повышению эффективности работы устройства для очистки флюида подбор оптимальной формы каналов должен осуществляться в зависимости от подачи насоса. Возможности для регулировки устройства для очистки флюида в зависимости от подачи скважинного насоса обеспечиваются за счет использования унифицированных и сменных деталей. Такое техническое решение позволяет повысить эффективность работы сепаратора и делает конструкцию более технологичной при изготовлении изделия и при его эксплуатации.

Следует понимать, что после рассмотрения специалистом приведенного описания с примером осуществления скважинного газопесочного сепаратора, а также сопроводительных чертежей, для него станут очевидными другие изменения, модификации и варианты реализации заявленного изобретения. Таким образом, все подобные изменения, модификации и варианты реализации, а также другие области применения, не имеющие расхождений с сущностью настоящего изобретения, следует считать защищенными настоящим изобретением в объеме прилагаемой формулы.

Похожие патенты RU2529978C1

название год авторы номер документа
Способ работы установки лопастного насоса со скважинным сепаратором механических примесей - укрупнителем газовой фазы (варианты) и погружная установка лопастного насоса для его осуществления (варианты) 2023
  • Трулев Алексей Владимирович
  • Клипов Александр Валерьевич
  • Шмидт Евгений Мстиславович
RU2810912C1
СКВАЖИННОЕ УСТРОЙСТВО ДЛЯ ОЧИСТКИ ФЛЮИДА 1999
  • Такканд Г.В.
  • Кармацких В.И.
  • Михайлов С.И.
  • Загорчик В.Б.
RU2148708C1
Сепаратор механических примесей 2019
  • Терпунов Вячеслав Абельевич
RU2727999C1
СКВАЖИННОЕ УСТРОЙСТВО ДЛЯ ОЧИСТКИ ЖИДКОСТИ 2019
  • Репко Александр Валентинович
  • Безумов Андрей Арсентьевич
  • Сентяков Борис Анатольевич
RU2711329C1
СЕПАРАТОР МЕХАНИЧЕСКИХ ПРИМЕСЕЙ ДЛЯ ЖИДКОСТИ 2014
  • Терпунов Вячеслав Абельевич
  • Терпунов Арсен Вячеславович
  • Терпунов Армен Вячеславович
RU2559277C1
Газопесочный сепаратор для подземного оборудования скважины 1989
  • Оразклычев Кульберды
SU1760099A1
СКВАЖИННЫЙ СЕПАРАТОР 2018
  • Данченко Юрий Валентинович
RU2686873C1
Глубинный самоочищающийся фильтр очистки скважинной жидкости (варианты) 2020
  • Николаев Олег Сергеевич
RU2748832C1
ГИДРОЦИКЛОННОЕ УСТРОЙСТВО ОЧИСТКИ ЖИДКОСТИ 2020
  • Репко Александр Валентинович
  • Безумов Андрей Арсентьевич
  • Сентяков Борис Анатольевич
RU2730062C1
Газовый сепаратор 1982
  • Ляпков Петр Дмитриевич
  • Игревский Виталий Иванович
  • Сальманов Рашит Гилемович
  • Дунюшкин Иван Игнатьевич
  • Филиппов Виктор Николаевич
  • Уряшзон Илья Хаимович
SU1161694A1

Иллюстрации к изобретению RU 2 529 978 C1

Реферат патента 2014 года СКВАЖИННЫЙ ГАЗОПЕСОЧНЫЙ СЕПАРАТОР

Изобретение относится к оборудованию для сепарации многофазных сред. Техническим результатом является повышение эффективности работы скважинного газопесочного сепаратора и упрощение конструкции. Скважинный газопесочный сепаратор содержит цилиндрический корпус с входными отверстиями, в верхней части которого концентрично установлен цилиндрический патрубок, содержащий сепарирующий узел в виде полого шнека с профилированной спиралью, спиральный канал, сообщающий входные отверстия с полостью усеченного конуса, вихревую камеру в виде полого усеченного конуса, концентрично установленную в нижней части корпуса под патрубком с сепарирующим узлом, и присоединенный к нижней части корпуса отстойник для сбора механических примесей. При этом профилированная спираль полого шнека выполнена двухзаходной. Наружная поверхность профилированной двухзаходной спирали имеет спиральную поверхность контакта с внутренней цилиндрической поверхностью корпуса, образуя двухзаходный спиральный канал, сообщающий входные отверстия с внутренней полостью корпуса выше вихревой камеры. Профилированная двухзаходная спираль расположена на полом шнеке ниже входных отверстий в корпусе сепаратора на расстоянии, превышающем один наружный диаметр шнека. На цилиндрическом корпусе выше входных отверстий установлен герметизирующий элемент, перекрывающий затрубное пространство. При этом геометрические размеры спиральных каналов и вихревой камеры подобраны в зависимости от дебита скважины и подачи применяемого скважинного насоса. 1 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 529 978 C1

1. Скважинный газопесочный сепаратор, содержащий цилиндрический корпус с входными отверстиями, в верхней части которого концентрично установлен цилиндрический патрубок, содержащий сепарирующий узел в виде полого шнека с профилированной спиралью, спиральный канал, сообщающий входные отверстия с полостью усеченного конуса, вихревую камеру в виде полого усеченного конуса, концентрично установленную в нижней части корпуса под патрубком с сепарирующим узлом, и присоединенный к нижней части корпуса отстойник для сбора механических примесей, отличающийся тем, что профилированная спираль полого шнека выполнена двухзаходной, а наружная поверхность профилированной двухзаходной спирали имеет спиральную поверхность контакта с внутренней цилиндрической поверхностью корпуса, образуя двухзаходный спиральный канал, сообщающий входные отверстия с внутренней полостью корпуса выше вихревой камеры, при этом профилированная двухзаходная спираль расположена на полом шнеке ниже входных отверстий в корпусе сепаратора на расстоянии, превышающем один наружный диаметр шнека, а на цилиндрическом корпусе выше входных отверстий установлен герметизирующий элемент, перекрывающий затрубное пространство, при этом геометрические размеры спиральных каналов и вихревой камеры подобраны в зависимости от дебита скважины и подачи применяемого скважинного насоса.

2. Скважинный газопесочный сепаратор по п.1, отличающийся тем, что сверху и снизу герметизирующего элемента установлены защитные центраторы, предотвращающие повреждение герметизирующего элемента при спуске и подъеме сепаратора.

Документы, цитированные в отчете о поиске Патент 2014 года RU2529978C1

Машина для разделки рыбы 1956
  • Борисоглебский А.Г.
  • Гольцман А.Н.
SU114720A1
Газопесочный сепаратор для подземного оборудования скважины 1989
  • Оразклычев Кульберды
SU1760099A1
Устройство для проявления скрытого электростатического изображения 1959
  • Анфилов И.В.
  • Барулин Ю.Н.
SU124308A1
СКВАЖИННОЕ УСТРОЙСТВО ДЛЯ ОЧИСТКИ ФЛЮИДА 1999
  • Такканд Г.В.
  • Кармацких В.И.
  • Михайлов С.И.
  • Загорчик В.Б.
RU2148708C1
Жидкостный манометрический термометр 1956
  • Сычев И.А.
SU108104A1
US 8051907 B2, 08.11.2011

RU 2 529 978 C1

Авторы

Ивановский Владимир Николаевич

Сабиров Альберт Азгарович

Булат Андрей Владимирович

Димаев Тимур Наилевич

Якимов Сергей Борисович

Деговцов Алексей Валентинович

Пекин Сергей Сергеевич

Даты

2014-10-10Публикация

2013-07-18Подача