СПОСОБ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД Российский патент 2014 года по МПК C02F9/08 C02F1/24 C02F1/52 C02F1/56 C02F1/36 C02F103/16 

Описание патента на изобретение RU2530041C1

Изобретение относится к области очистки промышленных сточных вод флотацией и может быть использовано при очистке промышленных стоков предприятий металлургической, пищевой, фармацевтической, кожевенной, текстильной, лакокрасочной отраслей промышленности, содержащих ионы цветных и тяжелых металлов, большое количество взвешенных веществ, масел и жиров.

Известен способ флотационной очистки сточных вод, включающий введение в сточную воду суспензии флокулянта - активного ила, сульфата алюминия и водного раствора углекислого газа с рН 2-11, последующее насыщение сточной воды растворенным под давлением 0,5 МПа воздухом и разделение на очищенный сток и удаляемый пенный слой - флотошлам (SU 1835802, C02F 1/24, опубл. 19.06.1995).

Однако известный способ не пригоден для очистки сточных вод, которые содержат соединения цветных и тяжелых металлов, например, соединения хрома (III), а также грубодисперсные и тонкодисперсные взвешенные вещества и жиры.

Наиболее близким по технической сущности и достигаемому техническому результату является способ очистки сточных вод кожевенного производства, содержащих соединения хрома (III). Способ очистки предназначен для обработки сбросов стоков, из которых уже выделены хромсодержащие стоки, и включает двухступенчатое усреднение сточных вод с фильтрацией для удаления грубодисперсных примесей, смешивание сточных вод с концентрацией тонкодисперсных примесей 3500-3600 мг/л с раствором сульфата алюминия в количестве 12-20 мг/л с коррекцией рН смеси до 6,4-7,5 введением серной кислоты и известкового молока (взвесь гашеной извести в известковой воде). Полученную смесь сточных вод, тонкодисперсных примесей и сульфата алюминия подают в напорный флотатор, где идет насыщение смеси воздухом, подаваемым под давлением 0,35-0,50 МПа. Образующийся осадок, содержащий механические примеси, удаляют, а очищенные стоки возвращают в реактор-смеситель, где идет процесс смешивания стоков с сульфатом алюминия. Возврат стоков необходим для поддержания в реакторе требуемой концентрации тонкодисперсных примесей в диапазоне 3500-3600 мг/л, что является характерным признаком известного способа.

Установка для осуществления известного способа включает соединенные магистралями накопитель, усреднитель первой ступени, решетчатый фильтр, накопитель-усреднитель второй ступени, сетчатый фильтр, реактор смешивания с сульфатом алюминия, флотатор с устройством насыщения сточных вод воздухом, сборную емкость очищенных стоков, магистраль возврата очищенных стоков в реактор для смешивания (RU 2145575, C02F 1/52, опубл. 20.02.2000.).

Недостатком известного способа является неэффективность его использования при очистке стоков, содержащих соединения хрома (III) и других металлов, а также достаточно большое время очистки и сложность обеспечения требуемых параметров способа, в частности, сложность контроля и поддержания концентрации тонкодисперсных примесей в диапазоне 3500-3600 мг/л в стоке, возвращаемом в реактор смешивания.

Задачей и техническим результатом изобретения является упрощение процесса очистки, уменьшение времени очистки, расширение технологических возможностей способа за счет обеспечения очистки всех сточных вод, в том числе стоков, содержащих ионы трехвалентного хрома и других металлов.

Технический результат достигается тем, что способ очистки промышленных сточных вод включает усреднение сточных вод, смешивание их с раствором сернокислого алюминия и коррекцию рН, напорную флотацию при насыщении сточных вод воздухом и удаление флотошлама, при этом коррекцию рН проводят при усреднении перед смешиванием с раствором сульфата алюминия до величины не менее 10,5, перед напорной флотацией в смесь добавляют свежеприготовленный водный раствор флокулянта с концентрацией 0,1-0,2 мас.%, а насыщение сточных вод воздухом при флотации ведут принудительной подачей в их объем очищенного оборотного стока под давлением 0,11-0,25 МПа после его обработки ультразвуковым полем с частотой 25-35 кГц с одновременной подачей в него сжатого воздуха.

Технический результат также достигают тем, что коррекцию рН ведут добавлением в сточную воду вещества, выбранного из группы: суспензия гашеной извести, раствор гидроксида натрия, раствор карбоната натрия; расход флокулянта составляет 30-40 мг/л; в качестве флокулянта используют высокомолекулярные катионные флокулянты на основе вещества, выбранного из группы: полиакриламид, сополимер акриламида с диметиламиноэтилметакрилатом, метилсульфатные и бензолсульфонатные соли диметиламиноэтилметакрилата, полиэтиленимин; обработку очищенного оборотного стока ультразвуковым полем ведут с использованием водно-газового эжектора с газоструйным генератором ультразвука при подаче сжатого воздуха в эжектор под давлением 0,25-0,45 МПа, а расход обработанного очищенного оборотного стока при подаче его в объем сточных вод составляет 40-60 м3/ч.

Изобретение может быть проиллюстрировано примерами осуществления способа очистки сточных вод после металлообработки и сточных вод кожевенного производства с использованием установки, содержащей известные элементы: соединенные магистралями устройство очистки от грубодисперсных примесей, усреднитель, напорный флотатор, устройство насыщения сточных вод воздухом - водно-газовый эжектор с газоструйным генератором ультразвука, емкость сбора очищенных стоков, устройство ввода флокулянта, скребковое устройство и шламоприемник, рециркуляционный насос, вентили.

Способ с использованием установки, содержащей указанные элементы, осуществляют следующим образом.

После стандартной механической фильтрации для очистки от грубодисперсных примесей на решетках и/или сетках сток, который может содержать до 100 мг/л ионов хрома (III) и других металлов, до 1500 мг/л жиров и до 10 000 мг/л взвешенных веществ с размерами частиц менее 2 мм, подают в усреднитель - емкость достаточного объема, где сток усредняют при постоянном перемешивании. При усреднении для коррекции рН до величины не менее 10,5 в сток добавляют суспензию гашеной извести с концентрацией 4,0-4,5 мас.% и раствор сульфата алюминия с концентрацией 8-12 мас.%. Расход сульфата алюминия при этом составляет 20-30 мг/л.

Аналогичный результат можно достигнуть при использовании смеси раствора сульфата алюминия и растворов гидроксида или карбоната натрия. При этой обработке происходит коагуляции трехвалентного хрома и других металлов в виде нерастворимых в воде гидроксидов. Затем сток подают обычным сырьевым насосом в напорную магистраль флотатора. Перед входом смеси во флотатор в нее с помощью стандартного устройства ввода добавляют раствор флокулянта в концентрации 0,1-0,2 мас.% при расходе 30-40 мг/л. Указанное устройство может состоять из дозирующих насосов типа НД 2,5 Э, подающих раствор флокулянта в напорную магистраль флотатора через компенсатор давления. В качестве флокулянта используют известные высокомолекулярные катионные флокулянты на основе вещества, выбранного из группы: полиакриламид, сополимер акриламида с диметиламиноэтилметакрилатом, метилсульфатные и бензолсульфонатные соли диметиламиноэтилметакрилата (поли-N,N,N,N-метакрилоилоксиэтилтриметиламмоний метилсульфат, поли-N,N,N,N-метакрилоилоксиэтилтриметиламмоний бензолсульфонат и др.) полиэтиленимин. Для осуществления способа наиболее эффективными являются продукты марок ZETAG и SUPERFLOC на основе полиакриламида в виде полиэлектролитов с содержанием активного вещества не менее 50%.

Сточные воды по напорной магистрали подают во флотатор, где его насыщают воздухом. Насыщение сточных вод во флотаторе ведут принудительной подачей в их объем части очищенного оборотного стока под давлением 0,11-0,25 МПа после его обработки ультразвуковым полем с частотой 25-35 кГц с одновременной подачей в него сжатого воздуха. Оптимальный расход обработанного очищенного стока, возвращаемого в виде двухфазной водно-воздушной смеси в нижнюю часть флотатора, зависит от объема флотатора и составляет 40-60 м3/ч.

Сгущенный флотошлам удаляют из верхней части флотатора, затем его дегазируют и транспортируют на участок механического обезвоживания, а очищенный сток из нижней части внешней камеры флотатора подается в емкость сбора.

Часть очищенного стока (оборотную воду) из емкости сбора или из флотатора после удаления флотошлама через вентиль принудительно подают под давлением 0,25-0,45 МПа насосом по магистрали в устройство обработки ультразвуковым полем, которое выполнено в виде известного водно-газового эжектора, снабженного газоструйным генератором ультразвука (например, газодинамический ультразвуковой водно-газовый эжектор (ГУВД) производства ООО «Энергомашавтоматика» - http://npoema.ru/prod/17).

Струя очищенного оборотного стока истекает из сопла эжектора в рабочую камеру, создает в ней разряжение и входит в патрубок, снабженный диффузором. Одновременно в рабочую камеру эжектора через сопла газоструйного генератора ультразвука подают (вводят) сжатый воздух под давлением 0,25-0,45 МПа, что приводит к формированию в рабочей камере ультразвукового поля частотой 25-35 кГц. При этом удельная мощность ультразвукового поля может достигать более 100 Вт/см2, а давление в зоне диффузора эжектора - 0,11-0,25 МПа. Наложение ультразвукового поля обеспечивает формирование в зоне диффузора двухфазной водно-воздушной смеси с пузырьками воздуха с размерами 15-25 мкм.

Полученная двухфазная водно-воздушная смесь, прошедшая через эжектор, принудительно под давлением 0,11-0,25 МПа поступает по магистрали в нижнюю часть флотатора (расход 40-60 м3/ч), где смешивается со стоком из реактора смешивания с образованием хлопьев осадка, которые после всплытия удаляют из флотатора. Продолжительность напорной флотации составляет 16-20 мин. Очищенный сток перекачивают в зону промежуточного отстаивания, после чего направляют на биологическую очистку.

Параметры предложенного способа и эффективность очистки сточных вод по примерам в сравнении со способом по прототипу представлены в таблице.

В примерах 1 и 4 очистке подвергнуты сточные воды после металлообработки, содержащие, мг/л:

ионы хрома (III), меди и алюминия - до 100,

индустриальные масла - до 1500,

взвешенные вещества с размерами частиц менее 2 мм (механические взвеси, алюминиевая пудра) - до 10 000.

В примерах 2, 3, 5 очистке подвергнуты сточные воды кожевенного производства, содержащие, мг/л:

ионы хрома (III) - до 100,

жиры - до 1500,

взвешенные вещества с размерами частиц менее 2 мм - до 10 000.

Приведенные примеры никак не ограничивают возможность осуществления данного способа в заявляемых пределах для очистки сточных вод любого другого производства от ионов цветных и тяжелых металлов, взвешенных веществ и жиров.

В результате реализации способа по изобретению время очистки промышленных сточных вод от ионов цветных и тяжелых металлов, взвешенных веществ, масел и жиров сокращается до 16-20 минут, обеспечивая заданную эффективность процессов очистки. Осуществление способа упрощается, поскольку не требует проведения постоянного контроля состава оборотных стоков, что позволяет значительно упростить процесс очистки и использовать простую схему устройства для его реализации.

Таблица Параметры способа Значение параметров по примерам Способ по прототипу 1 2 3 4 5 рН сточных вод после усреднения 10,5 10,7 10,9 10,6 10,8 менее 10 Вещество для коррекции рН Раствор гидроксида натрия Суспензия гашеной извести Раствор карбоната натрия Суспензия гашеной извести Раствор карбоната натрия Серная кислота и известковое молоко Вещество - активная основа флокулянта Полиэтиленимин Полиакриламид САД* Метилсульфатная соль ДМАЭМ** Бензолсульфонатная соль ДМАЭМ*** - Концентрация флокулянта, % 0,10 0,15 0,20 0,14 0,16 - Расход флокулянта, мг/л 30 35 40 32 38 - Частота ультразвукового поля, кГц 25 30 35 27 33 - Давление при подаче сжатого воздуха в эжектор, МПа 0,25 0,35 0,45 0,30 0,40 - Расход обработанного очищенного оборотного стока, подаваемого в сточные воды, м3 40 50 60 45 55 - Давление при подаче в сточные воды обработанного очищенного оборотного стока, МПа 0,11 0,18 0,25 0,15 0,20 0,35-0,50**** Продолжительность флотации, мин 20 18 16 17 19 30 Эффективность очистки, %, от:

- ионов Cr3+, Cu2+, Al3+ 98,7 99,1 98,9 98,7 98,9 - - взвешенных веществ с размерами частиц менее 2 мм 98,9 99,2 99,0 99,0 98,9 98,7-99,0 - масел и жиров 99,0 99,3 99,2 99,1 99,2 98,7-99,0 Примечание: * - сополимер акриламида с диметиламиноэтилметакрилатом ** - метилсульфатная соль диметиламиноэтилметакрилата (поли-N,N,N,N-метакрилоилоксиэтилтриметиламмоний метилсульфат) *** - бензолсульфонатная соль диметиламиноэтилметакрилата (поли-N,N,N,N-метакрилоилоксиэтилтриметиламмоний бензолсульфонат) **** - давление насыщения смеси сточных вод и сернокислого алюминия воздухом

Похожие патенты RU2530041C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД КОЖЕВЕННОГО ПРОИЗВОДСТВА 2013
  • Баяндин Максим Валерьевич
  • Кленовский Дмитрий Валерьевич
  • Баяндина Евгения Николаевна
  • Кленовская Марина Александровна
  • Баяндин Дмитрий Валерьевич
  • Галушкина Юлия Владимировна
  • Шарапов Николай Владимирович
  • Чепыгова Екатерина Витальевна
  • Донцов Антон Александрович
  • Галушкин Владимир Сергеевич
RU2530042C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД 2010
  • Золотников Андрей Александрович
  • Бомштейн Виктор Евгеньевич
  • Золотников Александр Николаевич
  • Бомштейн Евгений Викторович
RU2449950C2
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД МОЛОЧНОГО ПРОИЗВОДСТВА 2006
  • Феофанов Юрий Александрович
  • Литманова Наталия Леонидовна
RU2326821C1
СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ ДЛЯ МОЙКИ АВТОМАШИН 2012
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2523802C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД НАПОРНОЙ ФЛОТАЦИЕЙ 2007
  • Аким Эдуард Львович
  • Смирнов Михаил Николаевич
  • Мандре Юрий Георгиевич
  • Калчев Румен
RU2327646C1
СПОСОБ ОЧИСТКИ ХОЗЯЙСТВЕННО-БЫТОВЫХ И ПРОМФЕКАЛЬНЫХ СТОЧНЫХ ВОД 2006
  • Мельников Геннадий Максимович
  • Парахин Юрий Алексеевич
  • Майоров Сергей Александрович
  • Седов Юрий Андреевич
RU2332360C2
Способ реагентной обработки отходов промывки технологического оборудования производства технических тканей с пропиткой из синтетических волокон 2019
  • Зимовец Пётр Александрович
RU2707023C1
СПОСОБ ПОДГОТОВКИ ОБОРОТНОЙ ВОДЫ КАРТОННО-БУМАЖНОГО ПРОИЗВОДСТВА К ПОВТОРНОМУ ЕЕ ИСПОЛЬЗОВАНИЮ 2008
  • Кузнецов Сергей Сергеевич
  • Комиссаренков Алексей Алексеевич
  • Суслов Вячеслав Александрович
  • Сухов Вадим Витальевич
  • Цеханчук Геннадий Александрович
  • Артемьев Виктор Валентинович
RU2349695C1
Система водоснабжения и водоотведения на ткацком производстве 2023
  • Аверина Надежда Валерьевна
  • Антонов Владимир Николаевич
RU2817552C1
Способ очистки сточных вод 1980
  • Тартаковская Любовь Михайловна
  • Хананова Эльза Яковлевна
  • Арлашин Анатолий Романович
  • Тетерников Лев Иванович
  • Назаров Борис Георгиевич
  • Хабер Николай Васильевич
SU880996A1

Реферат патента 2014 года СПОСОБ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД

Изобретение может быть использовано при очистке промышленных стоков предприятий металлургической, пищевой, фармацевтической, кожевенной, текстильной, лакокрасочной отраслей промышленности, содержащих ионы цветных и тяжелых металлов, взвешенные вещества, масла и жиры. Способ включает усреднение сточных вод, коррекцию рН до величины не менее 10,5, смешивание их с раствором сернокислого алюминия и раствором флокулянта с концентрацией 0,1-0,2 мас.%. Проводят напорную флотацию при подаче в сточные воды 40-60 м3/ч очищенного оборотного стока под давлением 0,11-0,25 МПа с одновременной подачей в него сжатого воздуха и удаляют флотошлам. Перед подачей в сточные воды очищенный оборотный сток обрабатывают ультразвуковым полем с частотой 25-35 кГц. Коррекцию рН ведут добавлением в сточную воду суспензии гашеной извести или растворов гидроксида натрия или карбоната натрия. Расход флокулянта составляет 30-40 мг/л. В качестве флокулянта используют высокомолекулярные катионные флокулянты. Обработку ультразвуковым полем ведут с использованием водно-газового эжектора с газоструйным генератором ультразвука при подаче сжатого воздуха в эжектор под давлением 0,25-0,45 МПа. Способ обеспечивает упрощение процесса очистки, уменьшение времени очистки от ионов цветных и тяжелых металлов, взвешенных веществ, масел и жиров до 16-20 мин при сохранении заданной эффективности очистки. 5 з.п. ф-лы, 1 табл., 5 пр.

Формула изобретения RU 2 530 041 C1

1. Способ очистки промышленных сточных вод, включающий усреднение сточных вод, смешивание их с раствором сернокислого алюминия и коррекцию рН, напорную флотацию при насыщении сточных вод воздухом и удаление флотошлама, отличающийся тем, что коррекцию рН проводят при усреднении перед смешиванием с раствором сульфата алюминия до величины не менее 10,5, перед напорной флотацией в смесь добавляют свежеприготовленный водный раствор флокулянта с концентрацией 0,1-0,2 мас.%, а насыщение сточных вод воздухом при флотации ведут принудительной подачей в их объем под давлением 0,11-0,25 МПа очищенного оборотного стока после его обработки ультразвуковым полем с частотой 25-35 кГц с одновременной подачей в него сжатого воздуха.

2. Способ по п.1, отличающийся тем, что коррекцию рН ведут добавлением в сточную воду вещества, выбранного из группы: суспензия гашеной извести, раствор гидроксида натрия, раствор карбоната натрия.

3. Способ по п.1, отличающийся тем, что расход флокулянта составляет 30-40 мг/л.

4. Способ по п.1, отличающийся тем, что в качестве флокулянта используют высокомолекулярные катионные флокулянты на основе вещества, выбранного из группы: полиакриламид, сополимер акриламида с диметиламиноэтилметакрилатом, метилсульфатные и бензолсульфонатные соли диметиламиноэтилметакрилата, полиэтиленимин.

5. Способ по п.1, отличающийся тем, что обработку очищенного оборотного стока ультразвуковым полем ведут с использованием водно-газового эжектора с газоструйным генератором ультразвука при подаче сжатого воздуха в эжектор под давлением 0,25-0,45 МПа.

6. Способ по п.1, отличающийся тем, что расход обработанного очищенного оборотного стока при подаче его в объем сточных вод составляет 40-60 м3/ч.

Документы, цитированные в отчете о поиске Патент 2014 года RU2530041C1

СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД КОЖЕВЕННОГО ПРОИЗВОДСТВА 1998
  • Живетин В.В.
  • Машников И.В.
  • Елфимова Г.И.
  • Афанасьева В.А.
RU2145575C1
СПОСОБ ОЧИСТКИ СТОКОВ 1997
  • Козлов А.И.
  • Ульянов А.Н.
  • Герасимов О.А.
RU2116264C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД 1999
  • Желтобрюхов В.Ф.
  • Азаров В.Н.
  • Шапалин С.С.
  • Строкатова С.Ф.
  • Рахлин Ф.А.
  • Юркьян О.В.
RU2169708C2
Вертикальный выпарной аппарат 1948
  • Смирнов Н.И.
SU94787A1
WO 9837025 A1, 27.08.1998
US 5002645 A, 26.03.1991
JP 2008229427 A, 02.10.2008

RU 2 530 041 C1

Авторы

Кленовский Дмитрий Валерьевич

Баяндин Максим Валерьевич

Кленовская Марина Александровна

Баяндина Евгения Николаевна

Баяндин Дмитрий Валерьевич

Галушкина Юлия Владимировна

Шарапов Николай Владимирович

Чепыгова Екатерина Витальевна

Донцов Антон Александрович

Галушкин Владимир Сергеевич

Даты

2014-10-10Публикация

2013-04-17Подача