Изобретение относится к области очистки промышленных сточных вод флотацией и может быть использовано при очистке промышленных стоков предприятий металлургической, пищевой, фармацевтической, кожевенной, текстильной, лакокрасочной отраслей промышленности, содержащих ионы цветных и тяжелых металлов, большое количество взвешенных веществ, масел и жиров.
Известен способ флотационной очистки сточных вод, включающий введение в сточную воду суспензии флокулянта - активного ила, сульфата алюминия и водного раствора углекислого газа с рН 2-11, последующее насыщение сточной воды растворенным под давлением 0,5 МПа воздухом и разделение на очищенный сток и удаляемый пенный слой - флотошлам (SU 1835802, C02F 1/24, опубл. 19.06.1995).
Однако известный способ не пригоден для очистки сточных вод, которые содержат соединения цветных и тяжелых металлов, например, соединения хрома (III), а также грубодисперсные и тонкодисперсные взвешенные вещества и жиры.
Наиболее близким по технической сущности и достигаемому техническому результату является способ очистки сточных вод кожевенного производства, содержащих соединения хрома (III). Способ очистки предназначен для обработки сбросов стоков, из которых уже выделены хромсодержащие стоки, и включает двухступенчатое усреднение сточных вод с фильтрацией для удаления грубодисперсных примесей, смешивание сточных вод с концентрацией тонкодисперсных примесей 3500-3600 мг/л с раствором сульфата алюминия в количестве 12-20 мг/л с коррекцией рН смеси до 6,4-7,5 введением серной кислоты и известкового молока (взвесь гашеной извести в известковой воде). Полученную смесь сточных вод, тонкодисперсных примесей и сульфата алюминия подают в напорный флотатор, где идет насыщение смеси воздухом, подаваемым под давлением 0,35-0,50 МПа. Образующийся осадок, содержащий механические примеси, удаляют, а очищенные стоки возвращают в реактор-смеситель, где идет процесс смешивания стоков с сульфатом алюминия. Возврат стоков необходим для поддержания в реакторе требуемой концентрации тонкодисперсных примесей в диапазоне 3500-3600 мг/л, что является характерным признаком известного способа.
Установка для осуществления известного способа включает соединенные магистралями накопитель, усреднитель первой ступени, решетчатый фильтр, накопитель-усреднитель второй ступени, сетчатый фильтр, реактор смешивания с сульфатом алюминия, флотатор с устройством насыщения сточных вод воздухом, сборную емкость очищенных стоков, магистраль возврата очищенных стоков в реактор для смешивания (RU 2145575, C02F 1/52, опубл. 20.02.2000.).
Недостатком известного способа является неэффективность его использования при очистке стоков, содержащих соединения хрома (III) и других металлов, а также достаточно большое время очистки и сложность обеспечения требуемых параметров способа, в частности, сложность контроля и поддержания концентрации тонкодисперсных примесей в диапазоне 3500-3600 мг/л в стоке, возвращаемом в реактор смешивания.
Задачей и техническим результатом изобретения является упрощение процесса очистки, уменьшение времени очистки, расширение технологических возможностей способа за счет обеспечения очистки всех сточных вод, в том числе стоков, содержащих ионы трехвалентного хрома и других металлов.
Технический результат достигается тем, что способ очистки промышленных сточных вод включает усреднение сточных вод, смешивание их с раствором сернокислого алюминия и коррекцию рН, напорную флотацию при насыщении сточных вод воздухом и удаление флотошлама, при этом коррекцию рН проводят при усреднении перед смешиванием с раствором сульфата алюминия до величины не менее 10,5, перед напорной флотацией в смесь добавляют свежеприготовленный водный раствор флокулянта с концентрацией 0,1-0,2 мас.%, а насыщение сточных вод воздухом при флотации ведут принудительной подачей в их объем очищенного оборотного стока под давлением 0,11-0,25 МПа после его обработки ультразвуковым полем с частотой 25-35 кГц с одновременной подачей в него сжатого воздуха.
Технический результат также достигают тем, что коррекцию рН ведут добавлением в сточную воду вещества, выбранного из группы: суспензия гашеной извести, раствор гидроксида натрия, раствор карбоната натрия; расход флокулянта составляет 30-40 мг/л; в качестве флокулянта используют высокомолекулярные катионные флокулянты на основе вещества, выбранного из группы: полиакриламид, сополимер акриламида с диметиламиноэтилметакрилатом, метилсульфатные и бензолсульфонатные соли диметиламиноэтилметакрилата, полиэтиленимин; обработку очищенного оборотного стока ультразвуковым полем ведут с использованием водно-газового эжектора с газоструйным генератором ультразвука при подаче сжатого воздуха в эжектор под давлением 0,25-0,45 МПа, а расход обработанного очищенного оборотного стока при подаче его в объем сточных вод составляет 40-60 м3/ч.
Изобретение может быть проиллюстрировано примерами осуществления способа очистки сточных вод после металлообработки и сточных вод кожевенного производства с использованием установки, содержащей известные элементы: соединенные магистралями устройство очистки от грубодисперсных примесей, усреднитель, напорный флотатор, устройство насыщения сточных вод воздухом - водно-газовый эжектор с газоструйным генератором ультразвука, емкость сбора очищенных стоков, устройство ввода флокулянта, скребковое устройство и шламоприемник, рециркуляционный насос, вентили.
Способ с использованием установки, содержащей указанные элементы, осуществляют следующим образом.
После стандартной механической фильтрации для очистки от грубодисперсных примесей на решетках и/или сетках сток, который может содержать до 100 мг/л ионов хрома (III) и других металлов, до 1500 мг/л жиров и до 10 000 мг/л взвешенных веществ с размерами частиц менее 2 мм, подают в усреднитель - емкость достаточного объема, где сток усредняют при постоянном перемешивании. При усреднении для коррекции рН до величины не менее 10,5 в сток добавляют суспензию гашеной извести с концентрацией 4,0-4,5 мас.% и раствор сульфата алюминия с концентрацией 8-12 мас.%. Расход сульфата алюминия при этом составляет 20-30 мг/л.
Аналогичный результат можно достигнуть при использовании смеси раствора сульфата алюминия и растворов гидроксида или карбоната натрия. При этой обработке происходит коагуляции трехвалентного хрома и других металлов в виде нерастворимых в воде гидроксидов. Затем сток подают обычным сырьевым насосом в напорную магистраль флотатора. Перед входом смеси во флотатор в нее с помощью стандартного устройства ввода добавляют раствор флокулянта в концентрации 0,1-0,2 мас.% при расходе 30-40 мг/л. Указанное устройство может состоять из дозирующих насосов типа НД 2,5 Э, подающих раствор флокулянта в напорную магистраль флотатора через компенсатор давления. В качестве флокулянта используют известные высокомолекулярные катионные флокулянты на основе вещества, выбранного из группы: полиакриламид, сополимер акриламида с диметиламиноэтилметакрилатом, метилсульфатные и бензолсульфонатные соли диметиламиноэтилметакрилата (поли-N,N,N,N-метакрилоилоксиэтилтриметиламмоний метилсульфат, поли-N,N,N,N-метакрилоилоксиэтилтриметиламмоний бензолсульфонат и др.) полиэтиленимин. Для осуществления способа наиболее эффективными являются продукты марок ZETAG и SUPERFLOC на основе полиакриламида в виде полиэлектролитов с содержанием активного вещества не менее 50%.
Сточные воды по напорной магистрали подают во флотатор, где его насыщают воздухом. Насыщение сточных вод во флотаторе ведут принудительной подачей в их объем части очищенного оборотного стока под давлением 0,11-0,25 МПа после его обработки ультразвуковым полем с частотой 25-35 кГц с одновременной подачей в него сжатого воздуха. Оптимальный расход обработанного очищенного стока, возвращаемого в виде двухфазной водно-воздушной смеси в нижнюю часть флотатора, зависит от объема флотатора и составляет 40-60 м3/ч.
Сгущенный флотошлам удаляют из верхней части флотатора, затем его дегазируют и транспортируют на участок механического обезвоживания, а очищенный сток из нижней части внешней камеры флотатора подается в емкость сбора.
Часть очищенного стока (оборотную воду) из емкости сбора или из флотатора после удаления флотошлама через вентиль принудительно подают под давлением 0,25-0,45 МПа насосом по магистрали в устройство обработки ультразвуковым полем, которое выполнено в виде известного водно-газового эжектора, снабженного газоструйным генератором ультразвука (например, газодинамический ультразвуковой водно-газовый эжектор (ГУВД) производства ООО «Энергомашавтоматика» - http://npoema.ru/prod/17).
Струя очищенного оборотного стока истекает из сопла эжектора в рабочую камеру, создает в ней разряжение и входит в патрубок, снабженный диффузором. Одновременно в рабочую камеру эжектора через сопла газоструйного генератора ультразвука подают (вводят) сжатый воздух под давлением 0,25-0,45 МПа, что приводит к формированию в рабочей камере ультразвукового поля частотой 25-35 кГц. При этом удельная мощность ультразвукового поля может достигать более 100 Вт/см2, а давление в зоне диффузора эжектора - 0,11-0,25 МПа. Наложение ультразвукового поля обеспечивает формирование в зоне диффузора двухфазной водно-воздушной смеси с пузырьками воздуха с размерами 15-25 мкм.
Полученная двухфазная водно-воздушная смесь, прошедшая через эжектор, принудительно под давлением 0,11-0,25 МПа поступает по магистрали в нижнюю часть флотатора (расход 40-60 м3/ч), где смешивается со стоком из реактора смешивания с образованием хлопьев осадка, которые после всплытия удаляют из флотатора. Продолжительность напорной флотации составляет 16-20 мин. Очищенный сток перекачивают в зону промежуточного отстаивания, после чего направляют на биологическую очистку.
Параметры предложенного способа и эффективность очистки сточных вод по примерам в сравнении со способом по прототипу представлены в таблице.
В примерах 1 и 4 очистке подвергнуты сточные воды после металлообработки, содержащие, мг/л:
ионы хрома (III), меди и алюминия - до 100,
индустриальные масла - до 1500,
взвешенные вещества с размерами частиц менее 2 мм (механические взвеси, алюминиевая пудра) - до 10 000.
В примерах 2, 3, 5 очистке подвергнуты сточные воды кожевенного производства, содержащие, мг/л:
ионы хрома (III) - до 100,
жиры - до 1500,
взвешенные вещества с размерами частиц менее 2 мм - до 10 000.
Приведенные примеры никак не ограничивают возможность осуществления данного способа в заявляемых пределах для очистки сточных вод любого другого производства от ионов цветных и тяжелых металлов, взвешенных веществ и жиров.
В результате реализации способа по изобретению время очистки промышленных сточных вод от ионов цветных и тяжелых металлов, взвешенных веществ, масел и жиров сокращается до 16-20 минут, обеспечивая заданную эффективность процессов очистки. Осуществление способа упрощается, поскольку не требует проведения постоянного контроля состава оборотных стоков, что позволяет значительно упростить процесс очистки и использовать простую схему устройства для его реализации.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД КОЖЕВЕННОГО ПРОИЗВОДСТВА | 2013 |
|
RU2530042C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД | 2010 |
|
RU2449950C2 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД МОЛОЧНОГО ПРОИЗВОДСТВА | 2006 |
|
RU2326821C1 |
СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ ДЛЯ МОЙКИ АВТОМАШИН | 2012 |
|
RU2523802C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД НАПОРНОЙ ФЛОТАЦИЕЙ | 2007 |
|
RU2327646C1 |
СПОСОБ ОЧИСТКИ ХОЗЯЙСТВЕННО-БЫТОВЫХ И ПРОМФЕКАЛЬНЫХ СТОЧНЫХ ВОД | 2006 |
|
RU2332360C2 |
Способ реагентной обработки отходов промывки технологического оборудования производства технических тканей с пропиткой из синтетических волокон | 2019 |
|
RU2707023C1 |
СПОСОБ ПОДГОТОВКИ ОБОРОТНОЙ ВОДЫ КАРТОННО-БУМАЖНОГО ПРОИЗВОДСТВА К ПОВТОРНОМУ ЕЕ ИСПОЛЬЗОВАНИЮ | 2008 |
|
RU2349695C1 |
Система водоснабжения и водоотведения на ткацком производстве | 2023 |
|
RU2817552C1 |
Способ очистки сточных вод | 1980 |
|
SU880996A1 |
Изобретение может быть использовано при очистке промышленных стоков предприятий металлургической, пищевой, фармацевтической, кожевенной, текстильной, лакокрасочной отраслей промышленности, содержащих ионы цветных и тяжелых металлов, взвешенные вещества, масла и жиры. Способ включает усреднение сточных вод, коррекцию рН до величины не менее 10,5, смешивание их с раствором сернокислого алюминия и раствором флокулянта с концентрацией 0,1-0,2 мас.%. Проводят напорную флотацию при подаче в сточные воды 40-60 м3/ч очищенного оборотного стока под давлением 0,11-0,25 МПа с одновременной подачей в него сжатого воздуха и удаляют флотошлам. Перед подачей в сточные воды очищенный оборотный сток обрабатывают ультразвуковым полем с частотой 25-35 кГц. Коррекцию рН ведут добавлением в сточную воду суспензии гашеной извести или растворов гидроксида натрия или карбоната натрия. Расход флокулянта составляет 30-40 мг/л. В качестве флокулянта используют высокомолекулярные катионные флокулянты. Обработку ультразвуковым полем ведут с использованием водно-газового эжектора с газоструйным генератором ультразвука при подаче сжатого воздуха в эжектор под давлением 0,25-0,45 МПа. Способ обеспечивает упрощение процесса очистки, уменьшение времени очистки от ионов цветных и тяжелых металлов, взвешенных веществ, масел и жиров до 16-20 мин при сохранении заданной эффективности очистки. 5 з.п. ф-лы, 1 табл., 5 пр.
1. Способ очистки промышленных сточных вод, включающий усреднение сточных вод, смешивание их с раствором сернокислого алюминия и коррекцию рН, напорную флотацию при насыщении сточных вод воздухом и удаление флотошлама, отличающийся тем, что коррекцию рН проводят при усреднении перед смешиванием с раствором сульфата алюминия до величины не менее 10,5, перед напорной флотацией в смесь добавляют свежеприготовленный водный раствор флокулянта с концентрацией 0,1-0,2 мас.%, а насыщение сточных вод воздухом при флотации ведут принудительной подачей в их объем под давлением 0,11-0,25 МПа очищенного оборотного стока после его обработки ультразвуковым полем с частотой 25-35 кГц с одновременной подачей в него сжатого воздуха.
2. Способ по п.1, отличающийся тем, что коррекцию рН ведут добавлением в сточную воду вещества, выбранного из группы: суспензия гашеной извести, раствор гидроксида натрия, раствор карбоната натрия.
3. Способ по п.1, отличающийся тем, что расход флокулянта составляет 30-40 мг/л.
4. Способ по п.1, отличающийся тем, что в качестве флокулянта используют высокомолекулярные катионные флокулянты на основе вещества, выбранного из группы: полиакриламид, сополимер акриламида с диметиламиноэтилметакрилатом, метилсульфатные и бензолсульфонатные соли диметиламиноэтилметакрилата, полиэтиленимин.
5. Способ по п.1, отличающийся тем, что обработку очищенного оборотного стока ультразвуковым полем ведут с использованием водно-газового эжектора с газоструйным генератором ультразвука при подаче сжатого воздуха в эжектор под давлением 0,25-0,45 МПа.
6. Способ по п.1, отличающийся тем, что расход обработанного очищенного оборотного стока при подаче его в объем сточных вод составляет 40-60 м3/ч.
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД КОЖЕВЕННОГО ПРОИЗВОДСТВА | 1998 |
|
RU2145575C1 |
СПОСОБ ОЧИСТКИ СТОКОВ | 1997 |
|
RU2116264C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД | 1999 |
|
RU2169708C2 |
Вертикальный выпарной аппарат | 1948 |
|
SU94787A1 |
WO 9837025 A1, 27.08.1998 | |||
US 5002645 A, 26.03.1991 | |||
JP 2008229427 A, 02.10.2008 |
Авторы
Даты
2014-10-10—Публикация
2013-04-17—Подача