Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах.
Известен объемный расходомер, при котором среду подают из магистрали через насос, расходомер и рабочую нагрузку (Кремлевский П.П. Расходомеры и счетчики количества. Справочник. // Л., Машиностроение. 1989, 702 с). Недостатком известного расходомера является расположение измерительного устройства в последовательном ряду устройств потребления расхода, при котором нет потенциала на уменьшение погрешности измерения расхода.
Известно устройство измерения с использованием одного струйного генератора (RU 1295230 A1, 07.03.1987) с недостаточной зоной чувствительности, которая ограничивает нижнюю зону работоспособности и диапазон измерения в верхней части максимально допустимым перепадом давления на расходомере.
Известно устройство измерения расхода текучей среды (RU 2157967 C2, 21.05.1998), принятое за прототип. Часть потока среды после магистрального расходомера возвращают через вспомогательный расходомер и ограничительный дроссель в магистраль перед насосом и расход на рабочую нагрузку определяют как разность расходов через магистральный и вспомогательный расходомеры. Этот прием позволяет сместить зону измерения магистрального расходомера в необходимый пониженный диапазон.
Недостатками известного устройства является требование о наличии в составе измерительного комплекса напорного устройства (насоса), установленного в магистраль, т.к. без него комплекс неработоспособен.
Кроме того, насос должен соответствовать магистральному расходу, что связано с выполнением других проектных требований: увеличенные габариты, вес, ресурс, цена и др.
Кроме того, должна существовать функциональная связь прямой линии подачи с магистральным расходомером и ее нагрузки, которая обязывает согласовывать их параметры между собой. Иначе работа комплекса невозможна, если нагрузка поглощает магистральный расход без остатка. Кроме того, второй измерительный прибор (вспомогательный расходомер) должен иметь погрешность измерения заведомо меньшую, что обременяет комплекс дополнительной технологией измерения другого диапазона с вынужденной тарировкой, ценой, габаритами, весом и др.
Кроме того, магистральный и вспомогательный расходомеры беспрерывно работают в полном диапазоне, что сокращает ресурс измерительной части комплекса, расположенной в линии возвращения части потока, которая, однако, предназначена только для расширения границы в нижней части диапазона, и при измерении в принятом (без понижения) диапазоне не имеет смысла функционировать.
Кроме того, диапазон измерения смещается при наличии линии обратного потока, которая понижает порог чувствительности и вместе с ним снижает верхнюю границу измерения (практически обратный поток сбрасывается как часть расхода в бак), что значительно сужает диапазон измерения и предлагает недоиспользовать образовавшийся запас по верхней границе магистрального расходомера.
Кроме того, потоки магистрального трубопровода и обратного взаимозависимы. Не существует такого состояния, когда один поток постоянный по величине и при этом другой поток изменяется и может быть независимым.
Кроме того, при анализе известного комплекса как измерительного устройства показано, что звенья измерительной цепи (два расходомера) соединены по схеме встречно-параллельного соединения с положительной обратной связью, т.е. при увеличении расхода в магистральном трубопроводе одновременно увеличивается возвращающий расход через вспомогательный расходомер. Такое соединение в комплексе значительно увеличивает погрешность измерения не только в зоне понижения диапазона до порога чувствительности, так и после, т.к. в этом случае погрешности звеньев суммируются (Браславский Д.А. Приборы и датчики летательных аппаратов. Машиностроение. 1970. с.108).
Кроме того, в известном комплексе измерения характеристика звена, расположенного в обратной связи, неинверсная, что не позволяет рассматривать систему как встречно-параллельное соединение с отрицательной обратной связью, которое уменьшает общую погрешность измерения всего комплекса измерения.
Техническим результатом является расширение диапазона измерения расхода, его разделения на две части с понижением уровня измерения в первой части диапазона, не снижая верхнего значения второй части диапазона, уменьшение погрешности схемы измерения первой части диапазона, рассматривая изменения величин напорного и обратного потоков как информационные сигналы между звеньями измерительной системы, как измеритель, построенный на встречно-параллельном соединении звеньев с отрицательной обратной связью, возможность получения различной функциональной связи между величинами напорного и обратного потоков среды.
Технический результат достигается тем, что в предложенном объемном расходомере, содержащем последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока, устройство сравнения расходов и индикатор расхода, отличающееся тем, что до сумматора для обратного потока подключен насос с инверсной характеристикой, связанный с устройством сравнения расходов и который выключается по его сигналу.
Кроме того, в объемный расходомер дополнительно в канал между насосом и сумматором установлен обратный клапан.
На фиг.1 представлена структрурная схема объемного расходомера с пониженным начальным уровнем измерения (порогом), на фиг.2 - характеристика объемного расходомера в координатах «Q-Р», на фиг.3 - циклограмма работы при произвольном поступлении расхода Q среды на входе по каналу 1 в объемный расходомер.
Объемный расходомер содержит последовательно соединенные с входным каналом 1 сумматор 2 (гидравлический приточный тройник), канал 3 с расходомером 4 напорного потока, делитель 5 потока (гидравлический вытяжной тройник), выходной канал 6 и соединенный с делителем 5 для функционирования обратного потока 7 насос 8 (например, пьезонасос ПН) с инверсной характеристикой «Q-Р», управляемый через блок питания 9 устройством сравнения 10 (вычитания) сигналов показаний расходомера 4 напорного потока и заданного начального расхода обратного потока Q2 для отсчета расхода на индикаторе 11.
Обратный поток 7 образуется под воздействием насоса (например, пьезонасоса) 8, образуя принудительную циркуляцию 7 расхода обратного потока через расходомер 4.
Напорный поток 1 среды Q проходит через сумматор 2 потоков, образуя суммарный поток Q1 по каналу 3 за счет присоединения обратного Q2 потока 7, который отделяется от суммарного Q1 потока в разделителе 5, в устройстве 10 происходит вычитание из суммарного потока Q1 величины обратного Q2 потока 7 и фиксации сигнала фактического расхода напорного потока 1 на индикаторе 11. При этом полагается, что после процедуры вычитания поток 6, который прошел через нагрузку, считается равным по величине напорному потоку 1 и измерен с некоторой погрешностью ζ. При изменении величины напорного потока 1 изменяется, например, пропорционально, с противоположным знаком (инверсно) величина обратного потока 7.
Весь диапазон измерения (фиг.2) разделяют на две части - в первой работает обратный поток 7, во второй не работает обратный поток, в первой части диапазона обратный поток 7 принудительно насосом 8 направляют к напорному потоку 1, изменяют величину обратного потока 7:
- увеличивают его при уменьшении напорного потока 1 до согласованного (выбранного нижнего) значения первой части диапазона или
- уменьшают его величину до нуля по мере увеличения напорного потока 1 до согласованного (выбранного верхнего) значения первой части диапазона.
В первой части диапазона из суммарного потока 3 вычитают обратный поток 7, фиксируя величину на индикаторе 11, во второй остальной части диапазона измерения при нулевой величине обратного потока 7 напорный поток 1 измеряют расходомером 4, сигнал которого непосредственно проходит через устройство 10 на индикатор 11, фиксируя расход напорного потока 1 во втором диапазоне.
В схеме на фиг.1 звеном 13 обратной связи служит насос 8, который имеет инверсную характеристику «расход-давление» по отношения к изменению расхода (потенциалу) напорного потока, звеном 12 прямой цепи является расходомер 4, разделитель потока 5.
Звенья 12 и 13 включены по встречно-параллельной схеме для уменьшения относительной погрешности ζ измерения схемы, которая рассчитывается по известной формуле (Браславский Д.А. Приборы и датчики летательных аппаратов. Машиностроение. М. 1970. с.108)
ζ=ψ1ζ1+ψ2ζ2
ψ1=1/(1+S1S2) - коэффициент влияния звена 1 и ζ1 - его относительная погрешность,
ψ2=-S1S2/(1+S1S2) - коэффициент влияния звена 2 и ζ2 - его относительная погрешность,
S1 - крутизна характеристики «давление-расход» звена прямой цепи,
S2 - крутизна характеристики «давление-расход» звена обратной связи.
Поскольку ψ2 при такой схеме включения звеньев всегда со знаком минус, то общая относительная погрешность схемы измерения в первой части диапазона измерения снижена по сравнению с относительной погрешностью общей схемы.
Расширение диапазона измерения расхода достигается разделением его на две части с понижением уровня измерения в первой части диапазона. Величина обратного потока 7 звена обратной связи 13 позволяет повысить чувствительность расходомера 4 до согласованной нижней границы измерения, добавляя часть расхода, которой нехватает для начала уверенной работы расходомера 4. В известном устройстве обратный поток возвращается в магистраль (бак, емкость), в которой информационное поле по величине сигнала давления близко к нулю, т.к. насос, расположенный после точки суммирования потоков, определяет величину потенциала перед нагрузкой, а перед сумматором 2 создается разрежение (всасывание потока) и потенциал близок к пулю. В предложенном измерителе обратный поток возвращается в информационную линию с давлением по величине отличной от нуля. В этом случае для реализации встречно-параллельной схемы с отрицательной обратной связью необходима инверсная характеристика «давление-расход» звена обратной связи. Т.е. при увеличении потенциала (давления) и расхода измеряемого потока Q в точке суммирования расход обратного потока 7 уменьшается согласно характеристики «Q-Р» звена обратной связи независимо от сигнала управления на его снижение. Сигнал управления от устройства сравнения 10 совпадает по знаку со знаком снижения расхода насоса 8 по характеристике «Q-Р», приводит к согласованной работе и необходим для стабилизации расхода по каналу 3 и поддержания на постоянном уровне для сохранения ООС и уменьшения погрешности схемы измерения расхода в первой части диапазона.
Работа (фиг.3, см. строка «Q2», колонка 1) обратного потока 7 начинается с условного нуля, например Q2=20 л/ч, рабочей точки интервала между точкой уверенной работы расходомера 4 (например, Q1=40 л/ч) и пониженной согласованной границы измерения (например, Q=20 л/ч).
При недостаточном суммарном расходе по каналу 3, например, Q<20 л/ч (строка «вход Q», колонка 1) и Q1=Q+Q2<40 л/ч, проходящем через расходомер 4 индикатор 12 не показывает процесса измерения (строка «индикатор Q», колонка 1). Т.е. расход Q<20 л/ч вообще не измеряется, т.е. ΔQ≥0
При достаточном Q1=Q+Q2≥40 л/ч суммарном расходе 3, проходящем через расходомер 4, индикатор 11 показывает процесс измерения Q=Q1-Q2≥20 л/ч. В устройстве 10 заложена изначально величина - задан «условный ноль» Q20=20 л/ч для сравнения с поступающим приращением по расходу от расходомера 4. В этом же устройстве 10 фиксируется приращение δQ=Q2-Q20≥0, которое является сигналом к изменению производительности насоса 8, и величина Q2 обратного потока 7 понижается на величину превышения над величиной 40 л/ч, поддерживая величину 40 л/ч постоянной (строка «Q1», колонка 2), и так далее. Величина Q2 обратного потока 7 с увеличением напорного потока 1 (строка «вход Q», колонка 2) уменьшается по команде устройства сравнения 11 блоком питания 10 насоса 8 обратного потока 7.
Если расход Q>40 л/ч и более (строка «вход Q», колонка 3 или 7, 8), то насос ПН выключается из работы, расход Q2 равен нулю (см. строка «Q2», колонка 3) и работает только расходомер 4 измеряя Q1=Q во второй части диапазона измерения (строка «индикатор Q», колонка 3, 7, 8).
На фиг.2 показано, что величина расхода Q1 поддерживается (горизонтальная линия) по каналу 3 постоянной и равной, например 40 л/ч. Такое поддержание расхода Q1=const на выбранном уровне необходимо для согласованной работы насоса 8 обратного потока с инверсной характеристикой (уменьшение расхода) по увеличению перепада давления во входном трубопроводе 1 в точке суммирования 2.
В другом варианте исполнения связи между расходом Q1 и Q2 можно допустить, что Q1=var≤60 л/ч и Q2=const=20 л/ч, при достижении Q1=60 л/ч звено обратной связи 14 выключается из работы. При такой схеме работы, напоминающей работу схемы прототипа, в которой насос работает постоянно, существует два недостатка.
Первый недостаток - насос 8 должен по своим техническим данным иметь возможность преодолевать уровень потенциала в канале 1 при наращивании расхода, например, до 60 л/ч, т.к. при увеличении расхода Q на входе 1 увеличивается перепад давления в точке суммирования. В предложенном измерителе насос ПН в схеме находится до сумматора 2 по течению обратного потока 7, а не после, и прокачивает только обратный поток 7.
Второй - самый важный недостаток - в такой схеме суммирования (подобно известной) напорного и обратного потоков возникает ПОС (положительная обратная связь) вместо ООС, которая увеличивает погрешность измерения в диапазоне от сниженного порога (20 л/ч) до начала уверенной работы расходомера 4 (40 л/ч).
Принципиальное отличие схем понижения уровня порога чувствительности в предложенном способе и в прототипе в части определения погрешности измерения состоит в изменении существа обратной связи - ПОС заменяется на ООС.
В предложенной схеме определение расхода в первой и второй частей диапазона ведется расходомером 4 по потоку Q1. Только расчет погрешности измерения в первой части определяется погрешностью звеньев 12 и 13 прямой (расходомера 4) цепи и обратной связи (насос 8).
Предложенный способ предоставляет возможность получения различной функциональной связи между величинами напорного и обратного потоков среды. Например, для сокращения постоянной времени звеньев прямой цепи насос 8 включается с упреждением.
Когда в процессе увеличения напорного потока 1 достигается точка уверенной работы расходомера 4, то к этому моменту величина обратного потока 7 близка к нулю (фиг.2) и дальнейшее увеличение величины напорного потока 1 доводит его до полного исчезновения. Звено 14 выключается из работы измерения напорного потока 1 и осуществляется переход во вторую часть диапазона измерения, в которой расход Q напорного потока 1 измеряется только расходомером 4. Диапазон измерения второй части остается прежним, который не уменьшается при включении в работу первой части диапазона. Общий диапазон измерения расширен и понижен нижний уровень измерения расходомера 4, который ранее, до включения обратного потока 7, был недоступен, не снижая верхнего значения второй части диапазона. Проходное сечение закрыто для циркуляции потока 7 при неработающем насосе 8 и неработающий насос 8 через себя не пропускает поток 7. Дополнительно в канал между насосом 8 и сумматором 2 устанавливается обратный клапан (на фиг.1 не показан).
При открытом проходном сечении неработающего насоса 8 его канал может использоваться как байпас с пересчетом коэффициента пропускания потока через всю схему, увеличивая общую пропускную способность схемы измерения и расширяя общий диапазон измерения. При этом часть напорного потока проходит через проходное сечение насоса 8 (фиг.2, верхняя кривая характеристики «P-Q»). В случае использования канала байпаса достигается расширение второй части диапазона измерения увеличением максимального значения расхода.
Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Объемный расходомер содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока, устройство сравнения расходов и индикатор расхода. При этом до сумматора для обратного потока подключен насос с характеристикой «даление-расход», связанный с устройством сравнения расходов и который выключается по его сигналу. Технический результат - расширение диапазона измерения расхода, уменьшение погрешности и возможность получения различной функциональной связи между величинами напорного и обратного потоков среды. 1 з.п. ф-лы, 3 ил.
1. Объемный расходомер, содержащий последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока, устройство сравнения расходов и индикатор расхода, отличающийся тем, что до сумматора для обратного потока подключен насос с характеристикой «давление-расход», связанный с устройством сравнения расходов и который выключается по его сигналу.
2. Объемный расходомер по п.1, в котором дополнительно в канал между насосом и сумматором установлен обратный клапан.
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ТЕКУЧЕЙ СРЕДЫ | 1998 |
|
RU2157967C2 |
DE 102004019521 A1, 10.11.2005 | |||
US 4175433 A, 27.11.1979 | |||
УСТРОЙСТВО ПОКОМПОНЕНТНОГО ИЗМЕРЕНИЯ РАСХОДА СЫРОГО ГАЗА | 2010 |
|
RU2435142C1 |
Авторы
Даты
2014-10-20—Публикация
2013-06-27—Подача