СПОСОБ ПРОМЫСЛОВОЙ РЕГЕНЕРАЦИИ ТРИЭТИЛЕНГЛИКОЛЯ Российский патент 2014 года по МПК C07C43/13 C07C41/58 B01D53/26 

Описание патента на изобретение RU2531584C1

Изобретение относится к технологии восстановления абсорбирующих свойств триэтиленгликоля (ТЭГ), как влагопоглотителя, после многократной рециркуляции его в системе осушки природного газа перед подачей последнего в магистральный трубопровод, то есть к технологии очистки практически потерявшего свойства абсорбента вследствие длительного использования его в промысловых условиях газодобывающей отрасли.

Современный уровень технологии восстановления абсорбирующих свойств гликолей, как влагопоглотителей, при осушке природного газа отражен в целом ряде научно-технических публикаций: Осушка природных газов. И.В. Жданова, А.Л. Халиф - Изд. 2-е, М., Химия, 1984 - 192 с.; Очистка гликолей от механических примесей и углеводородов. О.П. Андреев, Р.В. Корытников, Д.А. Яхонтов, Т.М. Фарахов - М.: ООО «Газпром экспо», 2010 - 158 с.; Влияние изменения основных свойств и характеристик гликоля в процессе осушки газа на эффективность работы оборудования УКПГ сеноманской залежи. А.Н. Дудов, Н.И. Дубина, В.А. Ставицкий, Ю.Н. Ефимов, В.Ф. Гузов - Проблемы освоения месторождений Уренгойского комплекса, М., 1998, с.88-99; Комплексная очистка диэтиленгликоля на абсорбционных установках осушки газа месторождения Медвежье. К.М. Давлетов - Повышение эффективности освоения газовых месторождений Крайнего Севера, М., Наука, 1997, с.354-362; Создание установок регенерации гликоля с комплексом оборудования для очистки растворов от солей, тяжелых углеводородов, механических примесей и пути совершенствования массообменного оборудования. Г.К. Зиберт - Проблемы добычи и обустройства газовых и газоконденсатных месторождений на поздней стадии их разработки. М., 1997, с.160-165; Методы очистки гликолей от тяжелых углеводородов и продуктов деструкции. Э.С. Ключева, Н.П. Жила - М., ВНИИЭгазпром, 1990 - 40 с.; Осушка газа: оптимизация работы действующих установок. Часть 1. Определение требований к качеству гликоля и скорости его циркуляции. Д.Л. Крамер, У.Р. Кук - Нефть, газ, нефтехимия за рубежом, 1981, №1, с.21-24; Осушка газа: оптимизация работы действующих установок. Часть 2. Влияние эксплуатационных переменных показателей на эффективность осушки газа. Д.Л. Крамер, У.Р. Кук - Нефть, газ, нефтехимия за рубежом, 1981, №2, с.16-21, причем основным приемом генерации ТЭГ является выпаривание и отгонка воды. Однако в условиях газового промысла ТЭГ требует не только влагоудаления, но и очистки от накопившихся в нем разнообразных примесей как в жидком, так и в твердом состоянии. Такая очистка ТЭГ, как абсорбента-осушителя, тем более необходима из-за негативной особенности его селективно поглощать и накапливать ароматические углеводороды, существенно снижающие его влагопоглотительные свойства.

Для комплексного восстановления свойств предельно загрязнившегося примесями и влагой ТЭГ в настоящее время применяют кроме добавления воды значительное число веществ-добавок (реагентов, реактивов, присадок, ПАВ и т.п.) в определенных дозировках, как, например, изооктан по патенту [EP 0211659 A2, B01D 53/26, опубл. 25.02.87] или петролейный эфир фракции 70…100°C по патенту [RU 2409407 C1, B01D 3/36, опубл. 20.01.2011] или поверхностно-активную добавку состава Ni(CnH2n)2 по патенту [RU 2259861 C1, B01D 53/28, опубл. 10.09.2005] или алифатических спиртов в смеси с изопропилбензолом по патенту [RU 2394633 C2, B01D 53/26, опубл. 20.07.2010] с последующим гравитационным расслоением и разделением различных по плотности отстоявшихся слоев регенерируемого ТЭГ. Однако они не удаляют большую часть примесей углеводородного состава.

Наиболее близким техническим решением-способом восстановления свойств загрязненного при осушке природного газа ТЭГ в промысловых условиях является способ по патенту [RU 2446002 C1, B01D 53/26, опубл. 27.03.2012], сущность которого заключена в добавлении в ТЭГ, идущего с абсорбера, дополнительного количества воды, активном перемешивании смеси, нагреве и отстое до разделения ее на три характерных по составу фракции. То есть, в отстойнике смесь расслаивается на верхнюю легкую с ароматическими углеводородами фракцию, на среднюю, состоящую практически из ТЭГ с водой, и на нижнюю тяжелую фракцию, содержащую в основном тонкодисперсную суспензию твердых нафтеноароматических углеводородов с примесью асфальтенов и просто мехпримеси, выносимые из продуктивного пласта, а также продукты коррозии технологического оборудования. Средний, так называемый «осветленный» слой, состоящий из ТЭГ с повышенным содержанием воды, отбирают из отстойника, пропускают через фильтр и путем подмешивания к основному объему ТЭГ с абсорбера подают на выпарную колонну для отгонки воды, а верхний и нижний слои из отстойника периодически удаляют на утилизацию.

К недостаткам способа-прототипа следует отнести неэкономичное ведение процесса (дополнительный нагрев и длительный отстой), сложность контроля двух границ раздела трех слоев в отстойнике при отборе среднего слоя на регенерацию ТЭГ, а также низкое качество очистки ТЭГ от загрязнителей, влияющих на осушающую способность ТЭГ.

Требуемый технический результат (иначе - задача и цель заявляемого изобретения) заключается в обеспечении более высоких показателей восстановления осушающих свойств ТЭГ в сравнении с прототипом при большей экономичности процесса в целом.

Заявляемое изобретение решает поставленную задачу промысловой регенерации ТЭГ в соответствии с тем, что в способе-прототипе выпариванием воды из основного объема влагосодержащего ТЭГ и удалением попутно накопленных этим ТЭГ примесей и воды из остального, специально изъятого из процесса осушки газа объема ТЭГ, экстрагированием примесей дополнительно добавленной водой при интенсивном перемешивании этой смеси с последующим отстаиванием, сливом отстоявшегося из смеси ТЭГ, фильтрованием и регулируемым дозированным возвращением этого, слитого после отстаивания, ТЭГ в основной объем, подаваемый на выпаривание воды, перед стадией экстрагирования примесей в специально изъятый из оборота объем ТЭГ вводят не менее чем полуторакратный объем смеси воды и циклогексанона в объемном соотношении их, как два к одному соответственно.

Проведенный поиск в патентной документации и в научно-технической литературе показал, что приведенная совокупность существенных признаков в ней не обнаружена. Таким образом, приведенная совокупность признаков обеспечивает соответствие критериям патентоспособности, а именно: новизна, изобретательский кровень, промышленная применимость, а также обеспечивает получение технического результата, выражающегося в уменьшении энергопотребности, качестве очистки (регенерации) ТЭГ при реализации.

Данное техническое решение иллюстрируется чертежом, на котором приведена принципиальная технологическая схема промысловой регенерации загрязненного ТЭГ, где позициями 1 и 2 показаны блок абсорбции и блок регенерации ТЭГ установки комплексной подготовки газа (УКПГ). Позициями 3 и 4 показаны отстойный аппарат и выпарной аппарат соответственно блока очистки ТЭГ. Поток сырого газа 101 поступает в блок абсорбции 1. Поток сухого газа 102 из блока абсорбции 1 направляется в газопровод. Поток насыщенного ТЭГ (НТЭГ) 202 из блока абсорбции 1 подается в блок регенерации ТЭГ 2, где из НТЭГ отпаривается вода (поток 203). Поток регенерированного ТЭГ (РТЭГ) 201 возвращается в блок абсорбции 1.

Способ реализуют следующим образом. Из потока НТЭГ 202 или РТЭГ 201 отбирается поток 301 ТЭГ с загрязнителями и подается на блок очистки ТЭГ. В поток 301 дозируются вода (поток 302) и циклогексанон (поток 303) при очистке первой порции ТЭГ. При очистке последующих порций ТЭГ в поток 301 подается возвратная азеотропная смесь вода - циклогексанон (поток 306), потоками 302 и 303 производится подпитка недостающих количеств воды и циклогексанона для выполнения следующего соотношения: 1 объем триэтиленгликоля с загрязнителями; 1 объем воды; 0,5 объема циклогексанона. Наличие в разбавленном водой ТЭГе циклогексанона позволяет в отстойном аппарате получить 2 фазы: верхнюю, состоящую в основном из загрязнителей, которая удаляется на утилизацию (поток 304); нижнюю, состоящую из ТЭГ, воды и циклогексанона, которая направляется потоком 305 в выпарной аппарат, где из смеси при температуре 97÷107°C отгоняется азеотропная смесь вода - циклогексанон (поток 306), направляемая в поток очищаемого ТЭГ 301. Очищенный ТЭГ потоком 307 подается в поток НТЭГ 202 или РТЭГ 201.

В таблице 1 приведен баланс очистки ТЭГ разбавлением водой в присутствии циклогесанона (конкретный пример).

Таблица 1 Поток НТЭГ РТЭГ вход на очистку, м3 выход с очистки, м3 вход на очистку, м3 выход с чистки, м3 ТЭГ + загрязнители 5 5 Загрязнители 1,2 1,1 ТЭГ очищенный 5 4,9 Вода 5 4,8 5 4,6 Циклогексанон 2,5 1,5 2,5 1,9

При наличии циклогексанона в разбавленном водой ТЭГ достигается:

- сокращение времени отстоя при очистке ТЭГ;

- упрощение контроля за технологическим процессом (в отстойном аппарате образуется 2 фазы, а не 3, как в прототипе);

- улучшение качества очистки ТЭГ от загрязнителей, включая углеводороды, осмолы, продукты термодеструкции ТЭГ.

Кроме того, в технологический процесс регенерации ТЭГ направляется очищенный от загрязнителей ТЭГ с минимальным содержанием воды, что не вызовет увеличения нагрузки на выпарную колонну блока регенерации ТЭГ и не потребует увеличения количества технологического оборудования блока регенерации ТЭГ или количества блоков.

Таким образом, предлагаемое изобретение обеспечивает получение требуемого технического результата доступными техническими средствами без применения сложного специализированного оборудования при использовании незначительного количества такого вещества-добавки, как широко применяемый и недорогой циклогексанон по ГОСТ 24619-81 (ранее СТ СЭВ 1681-79) и подлежит защите охранным документом (патентом) РФ.

Похожие патенты RU2531584C1

название год авторы номер документа
СПОСОБ РЕГЕНЕРАЦИИ ТРИЭТИЛЕНГЛИКОЛЯ 2012
  • Цыганков Станислав Евгеньевич
  • Сорокин Анатолий Александрович
  • Касьяненко Андрей Александрович
  • Балько Роман Валерьевич
  • Ерзикова Елена Владимировна
  • Недзюк Сергей Петрович
  • Остроухов Сергей Николаевич
  • Зольников Андрей Анатольевич
  • Савенков Сергей Александрович
RU2527232C1
СПОСОБ ПРОМЫСЛОВОЙ РЕГЕНЕРАЦИИ ТРИЭТИЛЕНГЛИКОЛЯ 2010
  • Кононов Алексей Викторович
  • Кувандыков Ильис Шарифович
  • Гафаров Наиль Анатольевич
  • Гурьянов Валерий Владимирович
  • Олейников Олег Александрович
  • Кравчук Юрий Владимирович
RU2446002C1
БЛОК РЕГЕНЕРАЦИИ НАСЫЩЕННОГО ГЛИКОЛЯ (ВАРИАНТЫ) 2017
  • Курочкин Андрей Владиславович
RU2645496C1
СПОСОБ РЕГЕНЕРАЦИИ НАСЫЩЕННОГО РАСТВОРА АБСОРБЕНТА - ТРИЭТИЛЕНГЛИКОЛЯ 2002
  • Елистратов Александр Вячеславович
  • Истомин Владимир Александрович
  • Лаухин Юрий Александрович
  • Тимашев Андрей Павлович
  • Рудаков Виктор Александрович
  • Борисов Алексей Васильевич
RU2307699C2
СПОСОБ ОСУШКИ УГЛЕВОДОРОДНОГО ГАЗА ГЛИКОЛЯМИ 2009
  • Даутов Тимур Рамилевич
  • Магарил Ромен Зеликович
RU2409407C1
СПОСОБ ОЧИСТКИ РАСТВОРА ГЛИКОЛЯ - ОСУШИТЕЛЯ ПРИРОДНОГО ГАЗА 2001
  • Ананенков А.Г.
  • Ахметшин Б.С.
  • Борисов А.В.
  • Губин В.М.
  • Елистратов Вячеслав Иванович
  • Есикова Л.А.
  • Парфенов А.Н.
  • Салихов З.С.
  • Шевелев С.А.
  • Тимашев А.П.
  • Якупов З.Г.
RU2181069C1
СПОСОБ ПОЛУЧЕНИЯ КСЕНОНОВОГО КОНЦЕНТРАТА ИЗ ПРИРОДНОГО ГОРЮЧЕГО ГАЗА, ПРОДУКТОВ ЕГО ПЕРЕРАБОТКИ, ВКЛЮЧАЯ ТЕХНОГЕННЫЕ ОТХОДЯЩИЕ ГАЗЫ, И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) 2010
  • Сметанников Владимир Петрович
  • Орлов Александр Николаевич
  • Малинин Николай Николаевич
  • Семенова Ольга Павловна
RU2466086C2
СПОСОБ ОСУШКИ ГАЗА 1999
  • Вяхирев Г.И.
  • Загнитько А.В.
  • Пушко А.И.
  • Рапопорт З.Г.
  • Троценко Н.М.
  • Чаплыгин Ю.О.
  • Пушко Г.И.
RU2160151C2
СПОСОБ ОСУШКИ УГЛЕВОДОРОДНОГО ГАЗА 1999
  • Вяхирев Г.И.
  • Загнитько А.В.
  • Пушко А.И.
  • Рапопорт З.Г.
  • Троценко Н.М.
  • Чаплыгин Ю.О.
  • Пушко Г.И.
RU2160150C2
СПОСОБ ПОДГОТОВКИ ВОДЫ ЗАДАННОГО КАЧЕСТВА 2013
  • Попов Николай Сергеевич
  • Козачек Артемий Владимирович
  • Святенко Андрей Викторович
RU2538017C2

Иллюстрации к изобретению RU 2 531 584 C1

Реферат патента 2014 года СПОСОБ ПРОМЫСЛОВОЙ РЕГЕНЕРАЦИИ ТРИЭТИЛЕНГЛИКОЛЯ

Настоящее изобретение относится к способу промысловой регенерации триэтиленгликоля (ТЭГ) выпариванием воды из основного объема влагосодержащего ТЭГ и удалением попутно накопленных этим ТЭГом примесей и воды из остального, специально изъятого из процесса осушки газа объема ТЭГ, экстрагированием примесей дополнительно добавленной водой при интенсивном перемешивании этой смеси с последующим отстаиванием, сливом отстоявшегося из смеси ТЭГ, фильтрованием и регулируемым дозированным возвращением этого, слитого после отстаивания, ТЭГ в основной объем, подаваемый на выпаривание воды. При этом перед стадией экстрагирования примесей в специально изъятый из оборота объем ТЭГ вводят не менее чем полуторакратный объем смеси воды и циклогексанона в объемном соотношении их, как два к одному соответственно. Способ позволяет эффективно и экономично отделять примеси при отстаивании регенерируемого ТЭГ с получением практически обезвоженного абсорбента для его возврата в процесс осушки природного газа. 1 ил., 1 табл.

Формула изобретения RU 2 531 584 C1

Способ промысловой регенерации триэтиленгликоля выпариванием воды из основного объема влагосодержащего ТЭГ и удалением попутно накопленных этим ТЭГом примесей и воды из остального, специально изъятого из процесса осушки газа объема ТЭГ, экстрагированием примесей дополнительно добавленной водой при интенсивном перемешивании этой смеси с последующим отстаиванием, сливом отстоявшегося из смеси ТЭГ, фильтрованием и регулируемым дозированным возвращением этого, слитого после отстаивания, ТЭГ в основной объем, подаваемый на выпаривание воды, отличающийся тем, что перед стадией экстрагирования примесей в специально изъятый из оборота объем ТЭГ вводят не менее чем полуторакратный объем смеси воды и циклогексанона в объемном соотношении их, как два к одному соответственно.

Документы, цитированные в отчете о поиске Патент 2014 года RU2531584C1

СПОСОБ ПРОМЫСЛОВОЙ РЕГЕНЕРАЦИИ ТРИЭТИЛЕНГЛИКОЛЯ 2010
  • Кононов Алексей Викторович
  • Кувандыков Ильис Шарифович
  • Гафаров Наиль Анатольевич
  • Гурьянов Валерий Владимирович
  • Олейников Олег Александрович
  • Кравчук Юрий Владимирович
RU2446002C1
РАЗМОТЧИК РУЛОНОВ ХЛЕБНОЙ МАССЫ 2005
  • Баштовой Александр Геннадьевич
  • Петров Александр Владимирович
  • Ковалевский Вячеслав Николаевич
  • Осипов Яков Александрович
  • Гончарук Алексей Иванович
RU2300870C2
JP 63126521A, 30.05.1988
US 4070231A, 24.01.1978
СПОСОБ ВЫДЕЛЕНИЯ ДИЭТИЛЕНГЛИКОЛЯ И ТРИЭТИЛЕНГЛИКОЛЯ 2009
  • Бусыгин Владимир Михайлович
  • Макаров Геннадий Михайлович
  • Сафин Дамир Хасанович
  • Краснов Вячеслав Николаевич
  • Шарифуллин Рафаэль Ривхатович
  • Габдулхакова Назира Сабирхановна
  • Митаев Рамиль Рахматуллович
RU2420509C1

RU 2 531 584 C1

Авторы

Кононов Алексей Викторович

Степовой Константин Владимирович

Давыдов Юрий Станиславович

Медведев Михаил Вадимович

Ридель Иван Александрович

Даты

2014-10-20Публикация

2013-07-11Подача