Предлагаемое изобретение относится к электротехнике и может найти применение в регуляторах электрической энергии прецизионного технологического оборудования, например в установках выращивания сапфира.
Известно устройство для импульсного регулирования температуры в зонах регулирования электропечи, содержащее совокупность регуляторов напряжения, подключенных первыми силовыми выводами к выводам для подключения сети, вторыми силовыми выводами соединенных с выводами для подключения нагрузок, а также совокупность формирователей импульсов управления, соединенных своими выходами с управляющими входами регуляторов напряжения (Многоканальное устройство для регулирования температуры электронагревателей, патент РФ 2058580, G05D 23/19, 20.04.1996).
Недостатком устройства является повышенная пульсация мощности в секциях нагрузки, вызванная неравномерным процессом передачи энергии в них и обусловленная использованием для регулирования мощности принципа широтно-импульсной модуляции.
Наиболее близким по технической сущности к предложенному является устройство для импульсного регулирования температуры секционированной нагрузки, содержащее n регуляторов напряжения, подключенных первыми силовыми выводами к выводам для подключения сети, вторыми силовыми выводами соединенных с выводами для подключения n нагрузок, формирователь синхроимпульсов, вход которого соединен с выводами для подключения сети, а выходы - с входом распределителя импульсов, а также n формирователей импульсов управления, выполненных на основе реверсивного двоичного счетчика и имеющих импульсные информационные входы, подключенные к выходам распределителя импульсов, импульсные синхронизирующие входы, управляющие входы, управляющие выходы, подключенные через логическую схему к импульсным синхронизирующим входам (Устройство для импульсного регулирования мощности секционированной нагрузки, а.с. СССР, 1660099 H02M 3/18, 30.06.1991).
Недостатком такого устройства также является повышенная пульсация температуры в зонах регулирования электропечи, поскольку в основу его функционирования опять-таки положен принцип широтно-импульсной модуляции.
Технический результат выражается в снижении пульсаций температуры в зонах регулирования электропечи.
Технический результат достигается тем, что в известном устройстве, содержащем n регуляторов напряжения, подключенных первыми силовыми выводами к выводам для подключения сети, вторыми силовыми выводами соединенных с выводами для подключения n нагрузок, формирователь синхроимпульсов, вход которого соединен с выводами для подключения сети, а выходы - с входом распределителя импульсов, а также n формирователей импульсов управления, выполненных на основе реверсивного двоичного счетчика и имеющих импульсные информационные входы, подключенные к выходам распределителя импульсов, импульсные синхронизирующие входы, управляющие входы, управляющие выходы, подключенные через логическую схему к импульсным синхронизирующим входам, в качестве логической схемы используется конъюнктор, а в формирователи импульсов управления введены импульсные управляющие информационные выходы, соединенные с управляющими входами регуляторов напряжения. Кроме того, в состав каждого формирователя импульсов управления введены RS-триггер, R-вход которого соединен с выходом переполнения реверсивного счетчика, S-вход - с импульсным синхронизирующим входом, а прямой выход - с управляющим выходом, а также логическая схема конъюнкции, один вход которой соединен с импульсным информационным входом, второй вход - с инверсным выходом RS-триггера, а выход - с вычитающим входом двоичного реверсивного счетчика и управляющим выходом.
Принцип функционирования предложенного устройства поясняется чертежами, на которых изображены:
фиг.1 - электрическая схема устройства,
фиг.2 - электрическая схема формирователя импульсов управления,
фиг.3 - временные диаграммы формирования импульсов.
Устройство для импульсного регулирования температуры секционированной нагрузки (фиг.1) содержит n регуляторов напряжения (PH) 1, подключенных первыми силовыми выводами к выводам для подключения сети 2, вторыми силовыми выводами соединенных с выводами для подключения n нагрузок 3, формирователь синхроимпульсов (ФСИ) 4, вход которого соединен с выводами для подключения сети 2, а выходы - с входом распределителя импульсов (РИ) 5, а также n формирователей импульсов управления (ФИУ) 6, выполненных на основе реверсивного двоичного счетчика 7 и имеющих импульсные информационные входы 8, подключенные к выходам распределителя импульсов 5, импульсные синхронизирующие входы 9, управляющие входы 10, управляющие выходы 11, подключенные через логическую схему 12 к импульсным синхронизирующим входам 9. В качестве логической схемы 12 используется конъюнктор, а в формирователи импульсов управления введены импульсные управляющие информационные выходы 13, соединенные с управляющими входами регуляторов напряжения 1.
В состав каждого формирователя импульсов управления введены RS-триггер 14, R-вход которого соединен с выходом переполнения реверсивного счетчика 7, S-вход - с импульсным синхронизирующим входом 9, а прямой выход - с управляющим выходом 11, а также логическая схема конъюнкции 15, один вход которой соединен с импульсным информационным входом 8, второй вход - с инверсным выходом RS-триггера, а выход - с вычитающим входом двоичного реверсивного счетчика 7 и управляющим выходом 13.
Регуляторы напряжения выполнены на основе трансформатора, в цепь первичной обмотки которого последовательно включен электронный ключ. Остальные элементы устройства выполнены на стандартных микросхемах.
Работа устройства происходит следующим образом. Из входного напряжения сети u(t), изменяющегося с периодом Т, формирователем синхроимпульсов ФСИ осуществляется формирование последовательности коротких импульсов z(t), следующих с периодом T/2 и соответствующих моментам прохождения напряжением сети нулевого уровня
Распределитель импульсов РИ преобразует последовательность z(t) в совокупность импульсов, r1(t), r2(t),…,rn(t), где n - число зон регулирования. Периоды следования импульсов во всех последовательностях одинаковы и составляют nT/2, при этом импульсы каждой следующей последовательности задержаны относительно предыдущей последовательности на время Т/2n.
Последовательности r1(t), r2(t),…,rn(t) поступают на формирователи импульсов управления ФИУ1, ФИУ2,…,ФИУn, которые пропускают числа импульсов N1, N2,…,Nn, пропорциональные управляющим кодам Х1, Х2,…,Хn. В результате формируются последовательности импульсов f1, f2,…,fn, управляющие состоянием соответствующих ключей К1, К2,…,Кn и, следовательно, количеством полуволн напряжения сети, поступивших на нагрузки Z1, Z2,…Zn.
Формирователь импульсов управления 6 функционирует следующим образом. Импульс g осуществляет начальную установку счетчика 7 в исходное состояние, определяемое соответствующим ему кодом управления X. Одновременно происходит установка триггера 14 в исходное состояние, обеспечивающее прохождение распределенных импульсов r через логическую схему конъюнкции 15 на вычитающий вход счетчика 7 и на импульсный информационный выход 13, управляющий состоянием соответствующего регулятора напряжения 1.
Состояние счетчика изменяется до тех пор, пока не произойдет его полное обнуление. В момент обнуления формируется импульс h, опрокидывающий триггер. При этом прохождение импульсов r через логическую схему И на управляющий выход прекращается, а на инверсном выходе триггера 14 появляется логическая единица.
Количество импульсов f, прошедшее на управляющий вход ключа, пропорционально управляющему X коду. Оно определяет количество полуволн напряжения сети, поступивших в нагрузку.
Максимальное количество полуволн соответствует максимальному коду. Оно определяет длительность цикла регулирования, поскольку с приходом импульса q, соответствующего максимальному коду, на всех входах схемы конъюнктора 11 устанавливаются логические единицы, а на выходе им формируется сигнал g начальной установки, подаваемый на импульсный управляющий вход формирователя импульсов управления 6. Далее процесс периодически повторяется.
В предложенном регуляторе полуволны напряжения на нагрузке распределены более равномерно. Следовательно, пульсации температуры в каждой зоне будут иметь меньший уровень.
название | год | авторы | номер документа |
---|---|---|---|
СТАБИЛИЗАТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ | 1994 |
|
RU2072550C1 |
СТАБИЛИЗАТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ | 2011 |
|
RU2474864C1 |
ЦИФРОВОЙ ИЗМЕРИТЕЛЬ МОЩНОСТИ | 2013 |
|
RU2533746C2 |
СТАБИЛИЗАТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ | 2012 |
|
RU2501154C1 |
СТАБИЛИЗАТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ | 2014 |
|
RU2544734C1 |
Стабилизатор переменного напряжения | 1988 |
|
SU1628050A1 |
Стабилизатор переменного напряжения | 1982 |
|
SU1026123A1 |
Одноканальное устройство для фазового управления статическим преобразователем | 1977 |
|
SU736344A1 |
Преобразователь частоты | 1981 |
|
SU1069104A1 |
РЕГУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ | 2009 |
|
RU2393524C1 |
Изобретение относится к электротехнике и может найти применение в регуляторах электрической энергии прецизионного технологического оборудования, например в установках выращивания сапфира. Техническим результатом является снижение пульсаций температуры в зонах регулирования электропечи. Устройство содержит n регуляторов напряжения, подключенных первыми силовыми выводами к выводам для подключения сети, вторыми силовыми выводами к выводам для подключения n нагрузок, формирователь синхроимпульсов, вход которого соединен с выводами для подключения сети, а выходы - с входом распределителя импульсов, а также n формирователей импульсов управления, выполненных на основе реверсивного двоичного счетчика и имеющих импульсные информационные входы, подключенные к выходам распределителя импульсов, импульсные синхронизирующие входы, управляющие входы, управляющие выходы, подключенные через логическую схему к импульсным синхронизирующим входам, причем в качестве логической схемы используется конъюнктор, а в формирователи импульсов управления введены импульсные управляющие информационные выходы, соединенные с управляющими входами регуляторов напряжения. 1 з.п. ф-лы, 3 ил.
1. Устройство для импульсного регулирования температуры многозонной электропечи сопротивления, содержащее n регуляторов напряжения, подключенных первыми силовыми выводами к выводам для подключения сети, вторыми силовыми выводами к выводам для подключения n нагрузок, формирователь синхроимпульсов, вход которого соединен с выводами для подключения сети, а выходы - с входом распределителя импульсов, а также n формирователей импульсов управления, выполненных на основе реверсивного двоичного счетчика и имеющих импульсные информационные входы, подключенные к выходам распределителя импульсов, импульсные синхронизирующие входы, управляющие входы, управляющие выходы, подключенные через логическую схему к импульсным синхронизирующим входам, отличающееся тем, что в качестве логической схемы используется конъюнктор, а в формирователи импульсов управления введены импульсные управляющие информационные выходы, соединенные с управляющими входами регуляторов напряжения.
2. Устройство по п.1, отличающееся тем, что в состав каждого формирователя импульсов управления введены RS-триггер, R-вход которого соединен с выходом переполнения реверсивного счетчика, S-вход - с импульсным синхронизирующим входом, а прямой выход - с управляющим выходом, а также логическая схема конъюнкции, один вход которой соединен с импульсным информационным входом, второй вход - с инверсным выходом RS-триггера, а выход - с вычитающим входом двоичного реверсивного счетчика и управляющим выходом.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Конденсационное устройство для паровых машин | 1926 |
|
SU8402A1 |
Способ подготовки рафинадного сахара к высушиванию | 0 |
|
SU73A1 |
Шланговое соединение | 0 |
|
SU88A1 |
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем | 1924 |
|
SU2012A1 |
Авторы
Даты
2014-11-20—Публикация
2013-05-24—Подача