СПОСОБ И УСТАНОВКА ДЛЯ ОБЖИГА ЛИГНОЦЕЛЛЮЛОЗНОГО МАТЕРИАЛА Российский патент 2014 года по МПК C10B53/02 C10L5/44 C10L9/08 C10B49/02 

Описание патента на изобретение RU2534085C2

РОДСТВЕННЫЕ ЗАЯВКИ

Данная заявка заявляет приоритет предварительной заявки на патент США № 61/235114, зарегистрированной 19 августа 2009 года, полное содержание которой включено посредством ссылки.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Настоящее изобретение, в целом, касается установок и способов, относящихся к обжигу (torrefaction) лигноцеллюлозного материала.

Обжиг относится к термической обработке древесины, обычно в инертной атмосфере, при относительно низких температурах от 225 до 300°С. Обжиг обычно дает топливо с увеличенным значением удельной энергии относительно массы путем разложения реакционноспособной гемицеллюлозы древесины.

Древесина обычно содержит гемицеллюлозу, целлюлозу и лигнин. В одном аспекте задачей обжига является удаление влаги и органических летучих компонентов с низкой массой из древесины. Обжиг может также деполимеризовать длинные полисахаридные цепи гемицеллюлозной части древесины и давать твердый гидрофобный продукт с увеличенным значением удельной энергии (в расчете на массу) и улучшенной измельчаемостью. Вследствие изменения химической структуры древесины после обжига она может быть пригодна для использования в сжигающих уголь установках (обожженная древесина или биомасса имеет характеристики, которые похожи на характеристики низкокачественных углей) или может быть спрессована в высококачественные гранулы, заменяющие стандартные древесные гранулы.

Обжиг разработали в последние несколько десятилетий как возможный способ превращения биомассы на основе древесины в жизнеспособную добавку к спектру энергетических продуктов. Хотя было много исследований композиционных изменений, которые протекают в биомассе (древесине), подвергающейся обжигу, коммерческие способы не являются хорошо разработанными. Предлагаемые способ и установка для обжига были разработаны, чтобы удовлетворить коммерческую потребность в жизнеспособном способе обжига. Другие способы обжига описаны в: патентной публикации США № 2008/0223269, в которой теплопроводность используется для обжига; патенте США № 4787917, в котором обожженная древесина формуется в прутья необработанной древесины; и РСТ публикации № WO 2005/056723, в которой непрерывный способ и установка производят обожженную биомассу из исходного материала (органический материал, происходящий из лесного хозяйства или другого сельского хозяйства, и материал ископаемой природы или смесь - лигноцеллюлоза).

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Обжиг древесного материала обычно дает три продукта: твердый продукт темного цвета, который может быть далее переработан в гранулы или использован непосредственно как топливо из биомассы; кислотная фаза, образованная из конденсируемых органических соединений (включая уксусную кислоту, муравьиную кислоту, ацетон, фурфурол, но не ограничиваясь ими); и газы, такие как моноксид углерода или диоксид углерода. В одном аспекте данный способ может быть способом низкотемпературного низкокислородного пиролиза, где удаляются легкие к удалению соединения, имеющие наименьшие величины теплоты и энергии.

В одном аспекте этого способа приблизительно 30% массы сгорает при потере только 10% величины энергии, то есть оставшаяся твердая масса (приблизительно 70% от массы исходного материала) содержит 90% исходно присутствующей величины теплоты. Обжиг может протекать в реакторе под давлением и при температуре 220-300°С, где осуществляется прямой контакт исходного материала/биомассы (лигноцеллюлозный материал), который предварительно высушили для удаления приблизительно до 95% влаги, исходно присутствующей в биомассе, с горячим газом (газ, относительно свободный от кислорода). С помощью нагрева высушенной биомассы в реакторе обжига можно удалить оставшуюся воду из биомассы.

В одном аспекте присутствует установка для обжига лигноцеллюлозного материала. Данная установка может включать в себя: осушитель для сушки лигноцеллюлозного материала, сконструированный для удаления, по меньшей мере, части влаги, содержащейся внутри лигноцеллюлозного материала; реактор обжига, для его эксплуатации при давлении от 1 до 50 бар и при температуре от 100 до 1000°С, где данный реактор обжига генерирует обожженную биомассу и газ обжига из лигноцеллюлозного материала; первую петлю рецикла для возвращения газа обжига обратно в реактор обжига; охладитель для охлаждения обожженной биомассы, где данный охладитель приспособлен работать в условиях, по существу, отсутствия кислорода; циклон для отделения охлажденной обожженной биомассы от инертного газа; вторую петлю рецикла для возвращения инертного газа из циклона в охладитель и обеспечения инертного газа в реактор обжига; и линию подачи, приспособленную подавать инертный газ для добавления в охладитель. Данная установка может быть приспособлена использовать инертный газ в качестве среды для переноса тепла между реактором обжига и охладителем.

В другом аспекте описан способ обжига лигноцеллюлозного материала, содержащий этапы: сушки лигноцеллюлозного материала для удаления, по меньшей мере, части влаги, содержащейся внутри лигноцеллюлозного материала; реакции высушенного лигноцеллюлозного материала при давлении от 1 до 50 бар и при температуре от 100 до 1000°С в реакторе обжига для генерации обожженной биомассы и газа обжига; возврата, по меньшей мере, части газа обжига обратно в реактор обжига; охлаждения обожженной биомассы в охладителе, работающем в условиях, по существу, отсутствия кислорода; разделения обожженной биомассы и инертного газа в циклоне; возврата части инертного газа, отделенного в циклоне, в охладитель и возврата части инертного газа, отделенного в циклоне, в реактор обжига; подачи добавочного инертного газа в охладитель. Данный способ может использовать инертный газ в качестве среды для переноса тепла между реактором обжига и охладителем.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 представляет собой блок-схему, изображающую один вариант осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Фиг.1 схематично изображает установку коммерческого масштаба, способную к обжигу биомассы (лигноцеллюлозного материала). Вариант осуществления на фиг.1 раскрывает преимущества осуществления данного способа путем нагревания в отсутствие кислорода, что выгодно для безопасной эффективной работы.

В проиллюстрированном способе материал биомассы подается по трубопроводу 1 в осушающее устройство 2, которое представляет собой любое традиционное или нетрадиционное осушающее устройство, способное удалять от 85 до 98% влаги, присутствующей в биомассе. В изображенном осушающем устройстве 2 влага, присутствующая в биомассе, удаляется с помощью энергии, подаваемой с горячим газом 23. Осушитель может удалять такое достаточное количество влаги, чтобы абсолютное содержание влаги в высушенном лигноцеллюлозном материале составляло меньше чем 15% от общей массы лигноцеллюлозного материала. В изображенном варианте осуществления горячий газ в трубопроводе 23 является результатом топочного газа в трубопроводе 9 от установки 8 сгорания после того, как топочный газ слегка охлаждается с помощью непрямого теплообменника 20. Теплообменник 20 способствует возврату энергии в горячем топочном газе 9 обратно в реактор 5 обжига по трубопроводу 19 для использования в нагреве реактора 5.

Осушающий газ, подаваемый в осушитель 2 по трубопроводу 23, может иметь температуру до 1000°С, позволяя осуществлять осушение до желаемого остаточного уровня влаги. Высушенная биомасса затем подается через трубопровод 3 и поворотный клапан 4 на вход в реактор 5 под давлением (также называемый реактором обжига). Реактор 5 обжига может работать при от 5 до 20 бар и при рабочей температуре приблизительно 220-300°С. В других вариантах осуществления давление может меняться от 1 до 50 бар (и все поддиапазоны между ними), а температура может меняться от 100 до 1000°С (и все поддиапазоны между ними).

Для повышения температуры материала высушенной биомассы (например, от 100 до 300°С) подают тепло от нагретого газа реактора, подаваемого по трубопроводу 19. Нагретый газ реактора образован из части газа обжига (газ, получаемый в реакторе 5 обжига), который выходит из реактора 5 обжига по трубопроводу 6 и который возвращается в реактор 5 обжига (в виде возвращенного газа обжига по трубопроводу 7), и части богатого азотом газа циклона по трубопроводу 18.

Часть возвращенного газа обжига, который возвращается в реактор 5 обжига, и любой дополнительный, богатый азотом газ могут нагреваться в непрямом теплообменнике 20 топочным газом или другим нагревающим средством в трубопроводе 9 из установки 8 сгорания перед использованием в реакторе 5 обжига. Часть газа обжига (например, часть в трубопроводе 21), полученного в реакторе 5 обжига, может подаваться в установку 8 сгорания, где газ обжига смешивается с кислородсодержащим газом, подаваемым по трубопроводу 12 из установки 11 адсорбции с колебанием давления (АКД), и/или воздухом сгорания и/или с дешевым топливом, подаваемым по трубопроводу 22 (если необходимо), с получением топочного газа сгорания, выходящего по трубопроводу 9 из установки 8 сгорания.

Топочный газ сгорания может быть использован в качестве источника тепла для непрямого теплообменника 20, чтобы нагревать газ реактора, подаваемого в реактор 5 обжига по трубопроводу 19. Охлажденный топочный газ сгорания потока 23 может использоваться в осушающей установке 2, чтобы осушать входящую биомассу. Осушающий топочный газ трубопровода 24, полученный из процесса осушки, может направляться на дополнительную обработку перед выбросом в атмосферу или другое приемлемое устранение.

Обожженная биомасса, выходящая потоком 25 из реактора 5 обжига при температуре приблизительно от 220 до 300°С, может подаваться в поворотный клапан 26 на входе в охладитель 29 с псевдоожиженным слоем (или другой охладитель с прямым контактом). Охладитель 29 с псевдоожиженным слоем может быть комбинацией непрямого охладителя, использующего воду в качестве охлаждающей среды, и прямого охладителя, использующего охлажденный, богатый азотом поток 17 или любой другой инертный газ из теплообменника 16 и добавочный азот из установки 11 АКД (или оборудования разделения газа другого типа) или любой другой инертный газ, чтобы охлаждать обожженную биомассу, входящую в охладитель 29 с псевдоожиженным слоем потоком 25, до приблизительно 90°С в отсутствие кислорода или в, по существу, отсутствие кислорода. Охлажденная обожженная биомасса может выпускаться из охладителя 29 с псевдоожиженным слоем через поворотный клапан 30 (или аналогичное устройство, обеспечивающее работу охладителя 29 с псевдоожиженным слоем в отсутствие кислорода или в, по существу, отсутствие кислорода). Холодная обожженная биомасса в потоке 40, выпускаемом из охладителя 29 с псевдоожиженным слоем, может смешиваться с потоком 35 твердых веществ обожженной биомассы, отделяемом в циклоне 32 (выпускаемом через поворотный клапан 33 или другое такое оборудование, гарантирующее, что в отсутствие кислорода или в, по существу, отсутствие кислорода поддерживается в циклоне 32), с получением потока 37 для дополнительной обработки в гранулирующей установке 38 или другом процессе обработки продукта для прессования или упаковки твердой обожженной биомассы.

Охладитель 29 с псевдоожиженным слоем может работать при, по существу, атмосферном давлении (например, охладитель может работать при легком вакууме или давлении слегка выше атмосферного) и может использовать непрямое охлаждение от охлаждающей воды (обозначенной как подача охлаждающей воды (ПОВ) 27 и возврат охлаждающей воды (ВОВ) 28), а также прямое охлаждение от богатого азотом газа в потоке 17. Богатый азотом газ в потоке 17 может содержать часть богатого азотом газа циклона в потоке 36, объединенную с добавочным азотом 13. Теплообменник 16 может питаться охлаждающей водой в качестве среды непрямого охлаждения или другим доступным охлаждающим материалом.

Газ охладителя с псевдоожиженным слоем в потоке 31 из охладителя 29 с псевдоожиженным слоем может направляться в циклон 32, где охлажденный газ отделяется от любых захваченных твердых веществ. Охлажденный газ в потоке 34 может затем разделяться на две или больше частей. Например, поток 34 азота циклона может разделяться на две части: (i) поток 18, который может направляться в теплообменник 20 в нагревающей петле вокруг реактора обжига для смешения с потоком 7, чтобы питать реактор 5 обжига, и (ii) поток 36, который подается в теплообменник 16 для охлаждения.

Воздух в трубопроводе 10 может подводиться в установку АКД 11, где получают два газовых потока: пополняющий азотный поток 13 (поток, богатый азотом, с небольшим количеством кислорода или без него) и богатый кислородом поток 12, который используется вместе с дешевым топливом в установке сгорания.

Хотя предложенное описание использует азот как газ в петлях нагрева и охлаждения, где отсутствие кислорода или, по существу, отсутствие кислорода можно применять для избежания получения взрывчатых смесей, любой инертный газ (например, аргон или диоксид углерода, но азот предпочтителен) может использоваться вместо азота. Инертный газ (например, азот) используется в этом способе в качестве "несущего" газа, что означает, что инертный газ переносит тепло, необходимое в реакторе обжига, и от охладителя с псевдоожиженным слоем. Кроме того, хотя данный способ может использовать установку АКД для отделения азота от воздуха, любой другой способ отделения азота от воздуха также может быть использован и не является существенным признаком этого изобретения. Также в объеме данного изобретения можно использовать любой источник азота или другого инертного газа.

В варианте осуществления на фиг.1, кроме того, охлаждающая вода описана как охлаждающая среда в системах непрямого охлаждения. В других вариантах осуществления охлаждающая среда может быть некоторой средой, иной чем вода, без влияния на существенные технические признаки этого способа. То есть любая текучая среда, способная осуществлять эффективное охлаждение, может быть использована.

В одном аспекте существенным признаком этого способа является способность использовать богатый азотом газ из циклона (который иначе будет удаляться из установки) в качестве части газа реактора для этапа обжига. Путем использования этого богатого азотом газа может быть установлен баланс и в охлаждающей петле, и в нагревающей петле с минимальным добавлением дополнительного азота. Это также означает, что композиция газа обжига используется для установления рабочих условий установки сгорания путем регулирования отношения газа (по трубопроводу 21) из реактора, идущего в установку сгорания, к газу (по трубопроводу 6), производимому реактором. Это отношение - которое может быть выражено в объемных или мольных единицах - затем определяет количество азота, необходимого для пополнения, а также на количество требуемого дешевого топлива. Также предпочтительно, когда возвращаемые потоки в петлях нагрева и охлаждения остаются в отсутствие кислорода или в, по существу, отсутствие кислорода. В одном аспекте способ, описанный на фиг.1, может обеспечить оптимальный размер оборудования, тем самым сохраняя капитальные затраты, а также уменьшает воздействие на окружающую среду продуктов данного способа.

Хотя данное изобретение было описано в соединении с тем, что в настоящее время рассматривается как наиболее практичный и предпочтительный вариант осуществления, следует понимать, что данное изобретение не ограничивается описанным вариантом осуществления, но, напротив, предполагается, что оно покрывает различные модификации и эквивалентные осуществления, включенные в сущность и объем приложенной формулы изобретения.

Похожие патенты RU2534085C2

название год авторы номер документа
ПРОТИВОТОЧНАЯ УСИЛЕННАЯ КИСЛОРОДОМ ТОРРЕФАКЦИЯ 2012
  • Олофссон Ингемар
  • Нордвегер Мартин
  • Сандстрем Эрик
  • Поммер Линда
  • Нордин Андерс
RU2623225C2
СЖИГАНИЕ ОТХОДОВ В ЗАКРЫТОМ ЦИКЛЕ 1999
  • Бодуэн Томас Джей
RU2212583C2
СПОСОБ ПОЛУЧЕНИЯ ЦЕМЕНТНОГО КЛИНКЕРА В УСТАНОВКЕ И УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА ЦЕМЕНТНОГО КЛИНКЕРА 2010
  • Деврё,Себастьян
RU2536578C2
СПОСОБ КОНТРОЛЯ И УПРАВЛЕНИЯ ТЕМПЕРАТУРОЙ ОБЖИГА 2012
  • Олофссон Ингемар
  • Нордвегер Мартин
RU2593988C2
Установка для получения биотоплива из березовой коры 2018
  • Мелехов Владимир Иванович
  • Бабич Николай Алексеевич
  • Мюллер Оскар Давыдович
  • Тюрикова Татьяна Витальевна
  • Сазанова Екатерина Владимировна
  • Пономарева Наталья Геннадьевна
  • Клюшин Николай Михайлович
RU2672246C1
СЖИГАНИЕ ОТХОДОВ НА ОСНОВЕ ЗАМКНУТОГО ЦИКЛА 2002
  • Бодхьюин Томас Джей
RU2291998C2
СПОСОБ ОБЖИГА ВЫСОКОДИСПЕРСНЫХ КАРБОНАТСОДЕРЖАЩИХ МАТЕРИАЛОВ 2008
  • Калюжин Сергей Леонидович
  • Перескоков Александр Иосифович
  • Фетисов Борис Алексеевич
  • Шишкин Сергей Федорович
RU2369572C1
ТЕПЛООТВОД И ВЫДЕЛЕНИЕ ПРИ ПИРОЛИЗЕ БИОМАССЫ 2012
  • Кулпратхипанджа Сатхит
  • Палмас Паоло
  • Майерс Дэниел Н.
RU2582607C2
Способ и устройство для получения топлива из биомассы 2014
  • Бруслетто Руне
  • Плюккан Вольфганг
RU2640809C2
ИЗМЕЛЬЧЕНИЕ И УПЛОТНЕНИЕ ЧАСТИЦ БИОМАССЫ 2009
  • Брэди Майкл
  • Бартек Роберт
  • Стэмайрс Деннис
  • О'Коннор Пол
RU2533542C2

Реферат патента 2014 года СПОСОБ И УСТАНОВКА ДЛЯ ОБЖИГА ЛИГНОЦЕЛЛЮЛОЗНОГО МАТЕРИАЛА

Изобретения могут быть использованы в области переработки лигноцеллюлозного материала. Способ обжига лигноцеллюлозного материала включает сушку лигноцеллюлозного материала в осушителе (2). Высушенный лигноцеллюлозный материал подают в реактор обжига (5), где осуществляют реакцию при давлении от 1 до 50 бар и при температуре от 100 до 1000°С с образованием обожженной биомассы и газа обжига. Газ обжига возвращают обратно в реактор обжига (5) по трубопроводу (7). Обожженную биомассу охлаждают в охладителе (29), работающем в отсутствие кислорода и содержащем линию подачи инертного газа (17). В охладитель (29) также подают добавочный инертный газ. Инертный газ из охладителя (29) в потоке (31) подают в циклон (32), где отделяют его от твердых частиц, а затем возвращают в охладитель в потоке (36) и в реактор обжига (5) в потоке (18). Изобретения позволяют повысить безопасность работы установки, ее эффективность и экологичность процесса. 2 н. и 18 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 534 085 C2

1. Установка для обжига лигноцеллюлозного материала, содержащая:
осушитель для сушки лигноцеллюлозного материала для удаления, по меньшей мере, части влаги, содержащейся в лигноцеллюлозном материале;
реактор обжига для эксплуатации при давлении от 1 до 50 бар и при температуре от 100 до 1000°С, где данный реактор обжига генерирует обожженную биомассу из лигноцеллюлозного материала и генерирует газ обжига;
первую петлю рецикла для возвращения газа обжига обратно в реактор обжига;
охладитель для охлаждения обожженной биомассы, где данный охладитель приспособлен работать в, по существу, отсутствие кислорода;
вторую петлю рецикла для возвращения инертного газа в охладитель и обеспечения инертного газа в реактор обжига; и
линию подачи для введения инертного газа в охладитель;
где данная установка приспособлена для использования инертного газа в качестве, по меньшей мере, части среды для переноса тепла между реактором обжига и охладителем.

2. Установка по п.1, где данный охладитель представляет собой охладитель с псевдоожиженным слоем и где данная установка дополнительно содержит циклон для отделения охлажденной обожженной биомассы от инертного газа.

3. Установка по п.1, где данный инертный газ содержит азот.

4. Установка по п.1, где указанный осушитель приспособлен удалять влагу, присутствующую в лигноцеллюлозном материале, таким образом, что абсолютное содержание влаги в лигноцеллюлозном материале составляет менее 15% от общей массы лигноцеллюлозного материала.

5. Установка по п.1, где указанный осушитель потребляет энергию горячего газа при температуре до 1000°С.

6. Установка по п.1, где указанный реактор обжига работает при давлении от 5 до 20 бар.

7. Установка по п.1, где указанный реактор обжига эксплуатируют при температуре приблизительно 220-300°С.

8. Установка по п.1, дополнительно содержащая гранулятор для прессования твердой обожженной биомассы, полученной из охладителя.

9. Установка по п.1, дополнительно содержащая разделитель воздуха для его разделения на, по меньшей мере, первый поток, содержащий кислород, и второй поток, содержащий азот, где азот используется в качестве инертного газа.

10. Установка по п.1, дополнительно содержащая устройство для сгорания, по меньшей мере, кислорода и части газа обжига, полученного в реакторе обжига.

11. Установка по п.10, где данное устройство сгорания производит топочный газ, подаваемый в осушитель для сушки лигноцеллюлозного материала.

12. Способ обжига лигноцеллюлозного материала, содержащий этапы, где:
сушат лигноцеллюлозный материал для удаления, по меньшей мере, части влаги, содержащейся в лигноцеллюлозном материале;
осуществляют реакцию высушенного лигноцеллюлозного материала при давлении от 1 до 50 бар и при температуре от 100 до 1000°С в реакторе обжига, генерируя обожженную биомассу и газ обжига;
возвращают, по меньшей мере, часть газа обжига обратно в реактор обжига;
охлаждают обожженную биомассу в охладителе, работающем в, по существу, отсутствие кислорода;
возвращают инертный газ в охладитель и возвращают инертный газ в реактор обжига;
подают добавочный инертный газ в охладитель;
где данный способ использует инертный газ в качестве, по меньшей мере, части среды для переноса тепла между реактором обжига и охладителем.

13. Способ по п.12, где данный охладитель представляет собой охладитель с псевдоожиженным слоем и где данный способ дополнительно содержит этап разделения обожженной биомассы и инертного газа в циклоне.

14. Способ по п.12, где указанный инертный газ содержит азот.

15. Способ по п.12, где этап сушки удаляет влагу, присутствующую в лигноцеллюлозном материале, так что абсолютное содержание влаги в лигноцеллюлозном материале составляет менее 15% от общей массы лигноцеллюлозного материала.

16. Способ по п.12, дополнительно содержащий этап, где сжигают, по меньшей мере, кислород и часть газа обжига, полученного в реакторе обжига, с получением горячего топочного газа.

17. Способ по п.16, дополнительно содержащий этап, где подают горячий топочный газ в данный осушитель при температуре до 1000°С.

18. Способ по п.12, дополнительно содержащий этап, где прессуют в грануляторе твердую обожженную биомассу, полученную из охладителя.

19. Способ по п.12, дополнительно содержащий этап, где разделяют воздух на, по меньшей мере, первый поток, содержащий кислород, и второй поток, содержащий азот, и используют азот в качестве инертного газа.

20. Способ по п.12, где реакцию высушенного лигноцеллюлозного материала проводят при давлении от 5 до 20 бар.

Документы, цитированные в отчете о поиске Патент 2014 года RU2534085C2

WO 2005056723 A1,23.06.2005
WO 2007078199 A1, 12.07.2007;
US 4787917 A , 29.11.1988;
СПОСОБ КОНТРОЛЯ И РАЗБРАКОВКИ ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕМЕНТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Лузин А.М.
  • Петров А.Н.
  • Батуев В.И.
  • Филиппов Е.А.
RU2261489C2
US 2009193679 A1, 06.08.2009
Автоматическое устройство для сортировки по весу, например, хлебоизделий 1948
  • Сытин Н.И.
SU84015A1

RU 2 534 085 C2

Авторы

Стромберг Бертил

Ролз Джозеф М.

Даты

2014-11-27Публикация

2010-08-18Подача