ИСТОЧНИК ТЕПЛОВОЙ ЭНЕРГИИ Российский патент 2014 года по МПК F24J3/00 

Описание патента на изобретение RU2534663C2

Изобретение относится к машиностроению в области энергетики при преобразовании электрической энергии в тепловую энергию и может быть использовано для отопления жилых и приспособленных помещений, а также в нагревателях для различных технологических процессов.

Из уровня техники неизвестны аналогичные устройства, применяемые в качестве самостоятельных или только источников тепловой энергии. Однако известны электродные котлы, теплоэлектрические нагреватели и другие классические источники тепловой энергии, которые имеют низкие КПД, по сравнению с предложенным. Они могут служить для сравнения по эффективности с предлагаемым устройством.

Задачей изобретения является увеличение КПД источников тепловой энергии и снижение электрической энергии в системах отопления и нагревания.

Технический результат достигается тем, что осуществляют применение электрического насоса с мокрым ротором с функцией от времени по выражению

Q (t) = Q (t)обм . + Q (t)т . + C ,  [1]

где Q(t) - общая тепловая энергия источника в зависимости от времени;

Q(t)обм. - тепловая энергия от нагрева обмоток электродвигателя в зависимости от времени;

Q(t)т.т. - тепловая энергия от трения в теплоносителе в зависимости от времени;

С - тепловая энергия, независящая от нагрузки, в качестве источника тепловой энергии.

Широко известно назначение циркуляционных насосов с мокрым ротором для обеспечения доставки тепла потребителям в системах отопления. При этом в качестве источников тепла используются отдельные электродные или ТЭНовые нагреватели или котлы, а также газовые или на твердом топливе, которые часто находятся на больших расстояниях от потребителя.

В предлагаемом устройстве отпадает необходимость использования других источников тепла. Здесь происходят одновременная генерация и подача тепла потребителю непосредственно на месте его нахождения без шума, потерь и затрат на транспортировку, а также в безопасном виде. В предлагаемом источнике тепловой энергии происходит полный переход механической энергии вращающихся частей электрического насоса с мокрым ротором непосредственно в теплоноситель. Одновременно все тепловые потери электродвигателя полностью и непосредственно переходят в теплоноситель и также используются потребителем. В итоге они суммируются по математическому выражению [1] и находятся в функциональной зависимости от времени.

Основу предлагаемого источника тепла составляют широко известные постоянные и переменные потери классических электродвигателей с сухим ротором (Q(t)обм.+С), (1), а также насосные потери Q(t)т.т. (2). Постоянные потери не зависят от нагрузки электродвигателя и включают потери в стали и пр. Переменные потери зависят от нагрузки электродвигателя и включают электрические потери на нагрев его обмоток.

Уникальность предлагаемого устройства заключается в том, что переменные потери электродвигателя с мокрым ротором и насоса многократно увеличиваются ввиду до пятидесятикратного увеличения вязкости теплоносителя, по сравнению с воздушной средой, а также при регулированном ограничении подачи теплоносителя в систему отопления отсекающими вентилями с функцией от времени по выражению [1].

По описаниям заводов-изготовителей в инструкциях по эксплуатации и других источников информации в Интернете (3) КПД циркуляционных электрических насосов с мокрым ротором не превышает 40-50% в насосном режиме работы для создания напора. Это означает, что тепловые потери составляют в первом приближении 60-50%. Одновременно по информации (1) КПД асинхронных электродвигателей с сухим ротором для мощностей в несколько десятков Вт составляет 60-50%. Это показывает, что все значительные потери переходят в тепловую энергию.

Если учесть насосные потери на тепло от 15% при полностью открытых отсекающих вентилях на графическом материале заявки, до 90% при минимально открытом отсекающем нижнем вентиле, то имеется уникальная возможность применения электрических насосов с мокрым ротором в качестве принципиально нового источника тепла. Широко известно (2), что точка, в которой пересекаются характеристики насоса и системы циркуляции называют рабочей точкой, которая показывает равновесие между полезной мощностью насоса и мощностью, необходимой для преодоления сопротивления системы отопления в насосном режиме электрического насоса с мокрым ротором. В предлагаемом устройстве, когда применяем циркуляционный насос с мокрым ротором в качестве источника тепловой энергии, происходит регулируемое на 90-95% перекрытие, к примеру, нижним отсекающим вентилем, подачи теплоносителя в систему с радиатором, на прилагаемой тепловой схеме графического материала.

Таким образом, применение циркуляционного насоса с мокрым ротором в режиме генератора или источника тепла при регулировании степени перекрытия отсекающего вентиля позволяет повысить КПД принципиально нового источника тепла до 99% при одновременном аккумулировании тепла в объеме самого теплоносителя, а также исключить применение другого отдельного источника тепловой энергии. Какие-либо потери тепла и дополнительные затраты электроэнергии на отдельные принудительные циркуляции теплоносителя исключены.

Предотвращение излишнего перегрева обмоток статора электродвигателя обеспечивается ручным или автоматическим перекрытием отсекающего вентиля в зависимости от температуры окружающей среды и необходимого режима для потребителя тепла. Одновременно перегрев обмоток электродвигателя исключается ввиду отсутствия другого источника тепловой энергии в предлагаемой системе отопления. По источнику информации (3) предельная допустимая температура обмоток электродвигателя насоса с мокрым ротором достигает 142˚С. Заявителем данного изобретения, достигнуто значение температуры теплоносителя в радиаторе отопления 70-85˚С, при работе в длительном круглосуточном режиме для закрытого помещения, с помощью насоса мощностью 50-75-100 ватт по режимам скоростей.

В предлагаемом источнике тепла имеется ноу-хау для обеспечения до двухкратной экономии электрической энергии при получении одного и того же количества тепла, по сравнению с классическими непосредственными способами преобразования электрической энергии в тепловую энергию.

По сравнению с электродвигателем с сухим ротором в электродвигателе с мокрым ротором существуют дополнительные потери тепла в стенках разделительного стакана, вызванные вихревыми токами от вращающегося магнитного поля асинхронного двигателя. Они также суммируются к постоянной составляющей и не зависящей от нагрузки части выражения [1].

Краткое описание чертежа

На Фиг.1 изображена обычная тепловая схема соединения циркуляционного насоса с мокрым ротором. Здесь цифрой 1 обозначен циркуляционный насос с мокрым ротором, который является высокоэффективным источником тепловой энергии. Система труб 2 соединена с радиатором 3 рассеивания тепла, к примеру, в отапливаемом помещении. Стрелкой показано направление движения теплоносителя. Показаны обычные отсекающие вентили 4 и фильтр 5 очистки теплоносителя от механических примесей. Цифрой 6 обозначен расширительный бачок для теплоносителя. Питание электрического насоса с мокрым ротором производят от электрической энергии 7. Ввиду отсутствия необходимости использования других источников тепла они не показаны.

Осуществление изобретения

Предлагаемый источник тепловой энергии работает следующим образом. Система отопления с теплоносителем в начале, к примеру, запускается в режиме насоса, для этого все вентили находятся в открытом положении, и подается электрическое питание к электронасосу. При подключении электрического питания насос начинает принудительную циркуляцию теплоносителя в насосном режиме по указанному направлению. Происходит генерация тепла с минимальным КПД, не превышающим 50%, согласно инструкции по эксплуатации электрических насосов с мокрым ротором. По истечении определенного времен t температура теплоносителя поднимется. Для увеличения производительности источника тепла перекрываем отсекающий нижний выходной вентиль, к примеру, до 80% прохода теплоносителя. По истечении времени t1 температура теплоносителя резко поднимется до значения t1°C. Таким образом, за счет различной степени перекрытия вентиля можно достичь требуемой температуры теплоносителя в зависимости от температуры окружающей среды по функциональной зависимости [1]. Перегрев обмоток статора не допускаем пока в ручном режиме. Для более интенсивной генерации тепла предлагаемым источником тепла устройство будет совершенствоваться через последующие изобретения.

Предлагаемое устройство является новым, промышленно применимо и имеет изобретательский уровень.

Источники информации

1. Под редакцией И.П.Копылова, «Проектирование электрических машин», М., Юрайт, 2011.

2. Сканави А.И. «Отопление», М., Стройиздат, 1988, стр.169.

3. Русскоязычная страница в Интернете «Насосы с мокрым ротором» или «Циркуляционные насосы с мокрым ротором».

Похожие патенты RU2534663C2

название год авторы номер документа
СПОСОБ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ РАСХОДА ТЕПЛА В ТЕПЛОВОЙ СЕТИ ПРИ ДВУХКОНТУРНОЙ СИСТЕМЕ ОТОПЛЕНИЯ 2006
  • Кричке Владимир Оскарович
  • Карцев Владимир Викторович
  • Бермышев Александр Анатольевич
  • Кричке Виктор Владимирович
  • Громан Александр Оттович
RU2325591C1
КОГЕНЕРАЦИОННАЯ УСТАНОВКА 2021
  • Волкова Ания Дамировна
  • Марченко Александра Витальевна
RU2758020C1
Мобильный источник тепловой и электрической энергии 2019
  • Боев Сергей Федотович
  • Звонов Александр Александрович
  • Храмичев Александр Анатольевич
RU2735883C1
АВТОМАТИЗИРОВАННАЯ ИНФОРМАЦИОННАЯ СИСТЕМА ДЛЯ КОНТРОЛЯ И УПРАВЛЕНИЯ РАБОТОЙ ОТОПИТЕЛЬНОЙ КОТЕЛЬНОЙ С ВОДОГРЕЙНЫМИ КОТЛАМИ 2007
  • Кричке Владимир Оскарович
  • Галицков Станислав Яковлевич
  • Волков Юрий Вениаминович
  • Кияченко Иван Семенович
  • Серветник Павел Шепович
  • Ермаков Владислав Николаевич
  • Кричке Виктор Владимирович
  • Громан Александр Оттович
  • Попов Игорь Андреевич
  • Введенский Владимир Юрьевич
RU2340835C2
СИСТЕМА АВТОНОМНОГО ЭЛЕКТРО- И ТЕПЛОСНАБЖЕНИЯ ЖИЛЫХ И ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ 2003
  • Царев В.В.
  • Алексеевич А.Н.
RU2249125C1
Каскадная теплонасосная установка для отопления и горячего водоснабжения помещений сферы быта и коммунального хозяйства 2016
  • Сучилин Владимир Алексеевич
  • Губанов Николай Николаевич
  • Кочетков Алексей Сергеевич
RU2638252C1
АВТОМАТИЗИРОВАННАЯ КОМБИНИРОВАННАЯ УСТАНОВКА ПО КОМПЛЕКСНОЙ УТИЛИЗАЦИИ ТЕПЛОВОЙ ЭНЕРГИИ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ 2009
  • Высоцкий Александр Васильевич
  • Норкин Владислав Игоревич
  • Туркин Владимир Леонидович
  • Сахненко Виктор Иванович
RU2442005C2
УСТРОЙСТВО ДЛЯ НАГРЕВАНИЯ ЖИДКОСТИ И ПАРОГЕНЕРАТОР 2001
  • Малахов А.И.
  • Малахов М.А.
RU2211413C1
Теплонасосная установка воздушного отопления, охлаждения и горячего водоснабжения с рекуперацией и аккумуляцией теплоты 1987
  • Долгов Игорь Юрьевич
  • Костылев Владимир Александрович
SU1548624A1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ РАБОЧЕЙ СРЕДЫ В ЦИРКУЛЯЦИОННОМ НАСОСЕ, А ТАКЖЕ ЦИРКУЛЯЦИОННЫЙ НАСОС 2018
  • Экль Мартин
  • Шуллерер Йоахим
RU2760251C2

Иллюстрации к изобретению RU 2 534 663 C2

Реферат патента 2014 года ИСТОЧНИК ТЕПЛОВОЙ ЭНЕРГИИ

Изобретение относится к энергетике и может быть использовано в системах отопления жилых помещений, а также в нагревателях для различных технологических процессов. Сущность изобретения заключается в том, что в качестве источника тепловой энергии применяют циркуляционный насос с мокрым ротором, у которого при циркуляции теплоносителя частично до 95 % перекрывают входной и/или выходной отсекающий вентиль. Такой способ получения тепла позволит повысить КПД установки за счет сокращения потерь тепла при работе насоса. 1 ил.

Формула изобретения RU 2 534 663 C2

Применение электрического циркуляционного насоса с мокрым ротором через генерацию тепла, а также одновременную принудительную циркуляцию теплоносителя, посредством частичного, до 90 -95% перекрытия отсекающих вентилей, с функцией от времени по выражению
Q (t) = Q (t)обм . + Q (t)т . + C ,
где Q(t) - общая тепловая энергия источника в зависимости от времени;
Q(t)обм. - тепловая энергия от нагрева обмоток электродвигателя в зависимости от времени;
Q(t)т.т. - тепловая энергия от трения в теплоносителе в зависимости от времени;
С - тепловая энергия, не зависящая от нагрузки, в качестве источника тепловой энергии.

Документы, цитированные в отчете о поиске Патент 2014 года RU2534663C2

СИЛОВОЙ ПАРОГЕНЕРАТОРНЫЙ АГРЕГАТ 2007
  • Маринин Михаил Геннадьевич
  • Мосалёв Сергей Михайлович
  • Наумов Виктор Иванович
  • Сыса Виктор Павлович
RU2350770C1
МОБИЛЬНАЯ ТЕПЛОВАЯ СТАНЦИЯ 2007
  • Маринин Михаил Геннадьевич
  • Мосалев Сергей Михайлович
  • Наумов Виктор Иванович
  • Сыса Виктор Павлович
RU2333435C1
АВТОНОМНАЯ МНОГОФУНКЦИОНАЛЬНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2010
  • Мосалёв Сергей Михайлович
  • Сыса Виктор Павлович
  • Тароватов Юрий Викторович
RU2450148C2
КАВИТАЦИОННЫЙ ЭНЕРГОПРЕОБРАЗОВАТЕЛЬ 2001
  • Бритвин Л.Н.
  • Бритвин Э.Н.
  • Бритвина Т.В.
  • Щепочкин А.В.
RU2224957C2
DE 3040520 A1, 27.05.1982

RU 2 534 663 C2

Даты

2014-12-10Публикация

2012-10-25Подача