БИОРЕАКТОР С МЕМБРАННЫМ УСТРОЙСТВОМ ПОДВОДА ГАЗОВОГО ПИТАНИЯ Российский патент 2014 года по МПК C12M1/04 

Описание патента на изобретение RU2534886C1

Изобретение относится к микробиологической, пищевой, медицинской промышленности, в частности к биореакторам асептического выращивания микроорганизмов, и может быть использовано для комплектации установок учебного, научно-исследовательского и промышленного назначения.

Известен аппарат для культивирования клеток и тканей, содержащий закрытую емкость, мешалку и устройство для подвода газа в питательную среду, представляющее собой змеевик, выполненный из проницаемого для газа полимерного материала. Змеевик расположен внутри дополнительной циркуляционной обечайки (А.с. СССР №786326, C12M 1/84, 1986).

Недостатками такого аппарата являются использование механического перемешивающего устройства, герметизация вала которого сложна, а само наличие мешалки и разделение емкости аппарата на две части ограничивает объем, занимаемый трубчатым устройством газового питания. Все вышеперечисленное ведет к ограничению рабочей поверхности ввода газа и снижает предельные массообменные характеристики и производительность аппарата.

Известен биореактор для выращивания микроорганизмов, содержащий цилиндрический корпус, мешалку и несущие элементы, на которые крепится полимерная газопроницаемая трубчатая мембрана для подвода газа (см. http://www.fermenter.ru/content/page_48_0.html. Компактный настольный ферментер BIOSTAT В с устройством для безпузырьковой аэрации).

Недостатками такого аппарата являются использование сложного в герметизации вала механического перемешивающего устройства и неполное использование пространства для развития рабочей поверхности полимерной газопроницаемой трубчатой мембраны.

Известен биореактор вытеснения с мембранным устройством подвода и стерилизации газового питания колонного типа с осевым расположением газопроницаемых полимерных трубчатых мембран (патент RU 2415913, C12M 1/04, 2011). Внутри корпуса вдоль центральной его оси установлена несущая труба подвода газа, соединенная с газораспределительным устройством, на которой с равным шагом установлены перфорированные диски, через часть отверстий которых проходят газопроницаемые полимерные трубчатые мембраны, закрепленные между крышкой и газораспределительным устройством.

Конструктивное исполнение крепления газопроницаемых полимерных трубчатых мембран ограничивает удельную площадь поверхности мембран и, следовательно, снижает производительность биореактора. Кроме того, к недостаткам такого биореактора относится значительное количество штуцеров крепления мембран на газораспределительном устройстве и крышке аппарата, что усложняет конструкцию и затрудняет сборку/разборку биореактора.

Наиболее близким к изобретению по технической сущности и достигаемому эффекту является биореактор вытеснения с мембранным устройством подвода газового питания (патент RU 2446205, C12M 1/04, 2012). Биореактор включает цилиндрический корпус, крышку, днище, газораспределительное устройство, газопроницаемые полимерные трубчатые мембраны, установленные вдоль оси корпуса. Внутри корпуса вдоль центральной его оси установлена несущая труба теплообменника. Внутри трубы теплообменника расположена труба подвода газа, соединенная с газораспределительным устройством. Снаружи несущей трубы теплообменника установлена винтовая перфорированная поверхность, через отверстия которой проходят газопроницаемые полимерные трубчатые мембраны, закрепленные между крышкой и газораспределительным устройством. Установленная винтовая перфорированная поверхность создает перпендикулярное к мембранам винтовое движение потока жидкости.

К недостаткам такого биореактора относится ограниченность максимальной возможной поверхности газопроницаемых полимерных трубчатых мембран при их осевом расположении, что в свою очередь ограничивает производительность биореактора. Данная конструкция также характеризуется значительной сложностью монтажа мембран в неподвижной цельной винтовой вставке. В случае повреждения одной из трубчатых мембран, расположенной во внутренних рядах, замена поврежденного элемента характеризуется значительной трудоемкостью вследствие съема большого количества мембран внешних рядов.

Задача, на решение которой направлено заявляемое изобретение, заключается в увеличении производительности биореактора за счет увеличения рабочей удельной поверхности мембраны и в упрощении его конструкции.

Поставленная задача решается биореактором с мембранным устройством подвода газового питания, содержащим цилиндрический корпус, съемную крышку, днище, газораспределительное устройство, включающее газопроницаемые трубчатые мембраны, расположенную вдоль центральной оси корпуса несущую трубу подвода газа, штуцер подвода газа к несущей трубе и штуцер для отвода газа из полостей трубчатых мембран, причем газораспределительное устройство снабжено вертикальными гребенчатыми планками с пазами и установленными в биореакторе вверху и внизу между несущей трубой подвода газа и корпусом радиальными направляющими, имеющими равномерно размещенные в них пазы для фиксации в них вертикальных гребенчатых планок, газопроницаемые трубчатые мембраны размещены в пазах вертикальных гребенчатых планок с образованием винтообразных намоток с шагом, равным расстоянию между пазами гребенчатых планок, и закреплены посредством штуцеров подвода и отвода газового потока, закрепленных в верхней и нижней частях несущей трубы подвода газа соответственно.

Техническим результатом предлагаемого изобретения является увеличение продуктивности биореактора по биомассе микроорганизмов в 1,5 раза и упрощение его конструкции.

Изобретение иллюстрируется следующими чертежами:

на фиг.1 схематично показан биореактор в продольном сечении (для упрощения чертежа мембраны в пазах не показаны);

на фиг.2 показано поперечное сечение биореактора.

Биореактор содержит цилиндрический корпус 1, съемную крышку 2, днище 3, газораспределительное устройство 4, включающее расположенную вдоль центральной оси корпуса несущую трубу подвода газа 5, газопроницаемые трубчатые мембраны 6, гребенчатые планки 7. Корпус 1, крышка 2, днище 3, несущая труба подвода газа 5, гребенчатые планки 7 биореактора могут быть выполнены, например, из нержавеющей стали.

Рубашка теплообмена 8 биореактора имеет штуцеры 9 и 10 для ввода и отвода теплоносителя. Днище 3 имеет центрально расположенный штуцер 11, служащий для подачи питательной среды. Съемная крышка 2 имеет установленный в центре штуцер 12 для отбора жидкости, штуцеры 13, которые используются для установки датчиков (pH, pO2, eH и др.) и отбора газовой фазы. Газораспределительное устройство имеет штуцер 14 для подвода газа к несущей трубе 5 и штуцер 15 для отвода газа из полостей трубчатых мембран соответственно.

Газораспределительное устройство имеет соосно установленные вверху и внизу, напротив друг друга радиальные направляющие 16 с пазами для фиксации гребенчатых планок 7. Газопроницаемые полимерные трубчатые мембраны 6 навиваются в несколько рядов в пазы планок. Крепление каждой мембраны осуществляется на соответствующих ряду планок штуцерах подвода 17 и отвода 18 газового потока, закрепленных в верхней и нижней части несущей трубы подвода газа 5.

Геометрия размещения трубчатых мембран в аппарате определяет величину удельной поверхности мембран. С учетом требований максимизации указанной поверхности и простоты конструкции оптимальными размерами являются:

1) ширина планок равна 1,5÷2 диаметра газопроницаемой трубчатой мембраны;

2) ширина и глубина пазов в планках равна диаметру газопроницаемой трубчатой мембраны;

3) расстояние между пазами гребенчатых планок равно 0,5÷1 диаметра газопроницаемой трубчатой мембраны.

Рассмотрим предлагаемый биореактор в работе. В цилиндрический корпус 1 биореактора заливается питательная среда и вводится культура микроорганизмов через штуцер 11. В полость несущей трубы подвода газа 5 газораспределительного устройства 4 через штуцер 14 подается газ, например кислород. Через отводной штуцер 15 осуществляется сброс воздуха из полости трубчатых мембран 6 при кратковременной продувке их рабочим газом. При этом в культуральную жидкость через газопроницаемые полимерные трубчатые мембраны 6 поступает газовое питание.

В зависимости от потребности культуры микроорганизмов, по мере роста концентрации клеток, давление подаваемого газа в газораспределительном устройстве увеличивают. Интенсивность процесса определяют по скорости продуцирования углекислого газа, отбираемого из отводящего углекислый газ штуцера 13. Точка отбора углекислого газа находится выше штуцера 12, через который осуществляется отбор жидкости. С целью создания потока внутри биореактора культуральная жидкость, отбираемая через штуцер 12, возвращается в корпус биореактора через штуцер 11.

За счет предлагаемой геометрии мембран - винтообразной навивки достигается увеличение длины трубчатой мембраны в единице объема биореактора. Соответственно на 50-60 процентов увеличивается удельная поверхность мембран, что обеспечивает интенсификацию массообменных характеристик биореактора. Это способствует увеличению концентрации микроорганизмов, повышает производительность биореактора по выпускаемому продукту в 1,5 раза по сравнению с прототипом.

Предлагаемое изобретение позволяет упростить конструкцию биореактора за счет замены нескольких отрезков трубчатых мембран, расположенных вдоль аппарата, одним отрезком такой же или большей общей длины, располагаемым по линии винтовой намотки, что уменьшает количество штуцеров крепления мембран в 4-30 раз в зависимости от диаметра аппарата.

Таким образом, предлагаемое конструктивное решение позволяет повысить производительность биореактора в 1,5 раза, упростить его конструкцию и в результате снизить себестоимость выпускаемого продукта.

Похожие патенты RU2534886C1

название год авторы номер документа
Биореактор для выращивания метанокисляющих микроорганизмов 2023
  • Неретин Денис Анатольевич
  • Теребнев Александр Владимирович
  • Хохлачев Николай Сергеевич
  • Червякова Ольга Петровна
  • Семенова Виктория Александровна
  • Сакаян Даниил Игоревич
  • Небогатов Алексей Юрьевич
RU2815237C1
БИОРЕАКТОР ВЫТЕСНЕНИЯ С МЕМБРАННЫМ УСТРОЙСТВОМ ПОДВОДА ГАЗОВОГО ПИТАНИЯ 2010
  • Мухачев Сергей Германович
  • Емельянов Виктор Михайлович
  • Шавалиев Марат Фаридович
  • Владимирова Ирина Сильвестровна
  • Аблаев Алексей Равильевич
  • Нуруллина Елена Николаевна
RU2446205C1
БИОРЕАКТОР ВЫТЕСНЕНИЯ С МЕМБРАННЫМ УСТРОЙСТВОМ ПОДВОДА И СТЕРИЛИЗАЦИИ ГАЗОВОГО ПИТАНИЯ 2009
  • Емельянов Виктор Михайлович
  • Мухачев Сергей Германович
  • Шавалиев Марат Фаридович
  • Яруллин Рафинат Саматович
  • Якушев Ильгизар Алялтдинович
  • Аблаев Алексей Равильевич
  • Владимирова Ирина Сильвестровна
RU2415913C1
БИОРЕАКТОР С МЕМБРАННЫМ УСТРОЙСТВОМ ГАЗОВОГО ПИТАНИЯ МИКРООРГАНИЗМОВ 2015
  • Редикульцев Юрий Васильевич
  • Ширшиков Николай Васильевич
  • Гаврилов Анатолий Брониславович
  • Уграицкий Александр Алексеевич
  • Дерябин Сергей Михайлович
  • Алифанов Максим Вадимович
RU2596396C1
БИОЛОГИЧЕСКИЙ РЕАКТОР ДЛЯ ПРЕВРАЩЕНИЯ ГАЗООБРАЗНЫХ УГЛЕВОДОРОДОВ В БИОЛОГИЧЕСКИ АКТИВНЫЕ СОЕДИНЕНИЯ 2016
  • Редикульцев Юрий Васильевич
  • Ширшиков Николай Васильевич
  • Сафонов Александр Сергеевич
  • Алифанов Максим Вадимович
  • Гаврилов Анатолий Брониславович
RU2644344C1
Биореактор для интенсивного процесса выращивания аэробных микроорганизмов 2016
  • Яруллин Рамиль Фаритович
  • Мухачёв Сергей Германович
  • Чепегин Игорь Владимирович
RU2664860C1
Биореактор проточного типа для анаэробной обработки органических отходов животного и растительного происхождения с получением органических удобрений и биогаза 2018
  • Абубикеров Даниил Рафикович
  • Матвеев Андрей Павлович
  • Подсекин Александр Валентинович
  • Рогов Юрий Васильевич
RU2707818C1
АППАРАТ ДЛЯ СУСПЕНЗИОННОГО КУЛЬТИВИРОВАНИЯ КЛЕТОК ТКАНЕЙ ИЛИ МИКРООРГАНИЗМОВ 2008
  • Бородулин Александр Иванович
  • Марченко Юрий Васильевич
  • Ананько Григорий Григорьевич
RU2363729C1
БИОРЕАКТОР ДЛЯ КУЛЬТИВИРОВАНИЯ ФОТОАВТОТРОФНЫХ МИКРООРГАНИЗМОВ 1994
  • Габель Б.В.
  • Цоглин Л.Н.
RU2057433C1
БИОРЕАКТОР ДЛЯ ОЧИСТКИ ВОЗДУХА ОТ ТОКСИЧЕСКИХ, ВРЕДНЫХ И НЕПРИЯТНО ПАХНУЩИХ ЛЕТУЧИХ ВЕЩЕСТВ 1995
  • Безбородов А.М.
  • Жуков В.Г.
  • Попов В.О.
  • Рогожин И.С.
RU2090246C1

Иллюстрации к изобретению RU 2 534 886 C1

Реферат патента 2014 года БИОРЕАКТОР С МЕМБРАННЫМ УСТРОЙСТВОМ ПОДВОДА ГАЗОВОГО ПИТАНИЯ

(57) Изобретение относится к микробиологической, пищевой, медицинской промышленности, в частности к биореакторам асептического выращивания микроорганизмов, и может быть использовано для комплектации установок учебного, научно-исследовательского и промышленного назначения. Биореактор содержит цилиндрический корпус, съемную крышку, днище, газораспределительное устройство. Газораспределительное устройство имеет расположенную вдоль центральной оси корпуса несущую трубу подвода газа , а между несущей трубой подвода газа и корпусом вдоль радиальных линий - равномерно установленные вертикальные гребенчатые планки с пазами в одинаковом количестве. В пазах гребенчатых планок размещены газопроницаемые трубчатые мембраны с образованием винтообразных намоток с шагом, равным расстоянию между пазами гребенчатых планок. Изобретение позволяет повысить производительность биореактора в 1,5 раза при одновременном упрощении конструкции. 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 534 886 C1

1. Биореактор с мембранным устройством подвода газового питания, содержащий цилиндрический корпус, съемную крышку, днище, газораспределительное устройство, включающее газопроницаемые трубчатые мембраны, расположенную вдоль центральной оси корпуса несущую трубу подвода газа, штуцер подвода газа к несущей трубе и штуцер для отвода газа из полостей трубчатых мембран, отличающийся тем, что газораспределительное устройство снабжено вертикальными гребенчатыми планками с пазами и установленными в биореакторе вверху и внизу между несущей трубой подвода газа и корпусом радиальными направляющими, имеющими равномерно размещенные в них пазы для фиксации в них вертикальных гребенчатых планок, газопроницаемые трубчатые мембраны размещены в пазах вертикальных гребенчатых планок с образованием винтообразных намоток с шагом, равным расстоянию между пазами гребенчатых планок и закреплены посредством штуцеров подвода и отвода газового потока, закрепленных в верхней и нижней частях несущей трубы подвода газа соответственно.

2. Биореактор по п.1, отличающийся тем, что ширина гребенчатых планок составляет 1,5÷2 диаметра газопроницаемой трубчатой мембраны.

3. Биореактор по п.2, отличающийся тем, что ширина и глубина пазов планок равны диаметру газопроницаемой трубчатой мембраны.

4. Биореактор по п.3, отличающийся тем, что расстояние между пазами гребенчатых планок составляет 0,5÷1 диаметра газопроницаемой трубчатой мембраны.

Документы, цитированные в отчете о поиске Патент 2014 года RU2534886C1

БИОРЕАКТОР ВЫТЕСНЕНИЯ С МЕМБРАННЫМ УСТРОЙСТВОМ ПОДВОДА ГАЗОВОГО ПИТАНИЯ 2010
  • Мухачев Сергей Германович
  • Емельянов Виктор Михайлович
  • Шавалиев Марат Фаридович
  • Владимирова Ирина Сильвестровна
  • Аблаев Алексей Равильевич
  • Нуруллина Елена Николаевна
RU2446205C1
БИОРЕАКТОР ВЫТЕСНЕНИЯ С МЕМБРАННЫМ УСТРОЙСТВОМ ПОДВОДА И СТЕРИЛИЗАЦИИ ГАЗОВОГО ПИТАНИЯ 2009
  • Емельянов Виктор Михайлович
  • Мухачев Сергей Германович
  • Шавалиев Марат Фаридович
  • Яруллин Рафинат Саматович
  • Якушев Ильгизар Алялтдинович
  • Аблаев Алексей Равильевич
  • Владимирова Ирина Сильвестровна
RU2415913C1
ФИЛЬТРУЮЩЕЕ УСТРОЙСТВО В ВИДЕ ПОЛОЙ ВОЛОКОННОЙ МЕМБРАНЫ И ЕГО ПРИМЕНЕНИЕ ПРИ ОЧИСТКЕ СТОЧНЫХ ВОД, А ТАКЖЕ МЕМБРАННЫЙ БИОРЕАКТОР 2003
  • Демоулин Гуннар
RU2314864C2

RU 2 534 886 C1

Авторы

Шавалиев Марат Фаридович

Мухачев Сергей Германович

Емельянов Виктор Михайлович

Даты

2014-12-10Публикация

2013-10-15Подача