СПОСОБ ОПРЕДЕЛЕНИЯ АЭРОДИНАМИЧЕСКОЙ ДЕФОРМАЦИИ ЗАЩИТНЫХ КОНСТРУКЦИЙ ОДЕЖДЫ Российский патент 2014 года по МПК G01M9/00 A41D13/00 

Описание патента на изобретение RU2537122C1

Изобретение относится к области швейного материаловедения, в частности к способу исследования процессов деформации защитных конструкций одежды под действием аэродинамической нагрузки.

Защитная конструкция одежды предназначена для обеспечения тепловой защиты человека в неблагоприятных условиях среды, от ее свойств зависит тепловое состояние человека. Защитная конструкция одежды представляет собой объемно-упругую оболочку, имеющую допустимую толщину δ=0,02-0,06 м и состоящую из слоев: ткань верха, объемно-упругий утеплитель и подкладка. Объемно-упругая защитная конструкция одежды под воздействием аэродинамической нагрузки деформируется, что влечет за собой изменение свойств одежды.

Из патентной литературы в области экспериментальной аэродинамики известны способы и устройства для определения аэродинамических характеристик, применяемые для изучения воздействия потока газа (в большинстве случаев воздуха) на обтекаемый объект - самолет, автомобиль, корабль, мост, здание и др., а также экспериментального изучения аэродинамических явлений (патент RU 2407998 C2, 27.12.2010; патент RU 2460982 C1, 10.09.2012; патент US 6820477 B2, 23.11.2004).

Перечисленные способы и установки характеризуются высоким уровнем технической сложности, материалоемкости конструкции, имеют ограниченную область испытаний.

В швейном материаловедении для определения деформационных свойств текстильных материалов и изделий из них известен стандартный метод определения толщины путем сжатия образца при постоянном давлении в течение определенного времени воздействия нагрузки (ГОСТ 12023-2003. Материалы текстильные и изделия из них. Метод определения толщины. Введен 01.12.2005 - М.: Стандартинформ, 2005. С 3-8). Однако известный способ не позволяет определить изменение толщины объемно-упругой защитной конструкции одежды как следствие воздействия аэродинамической нагрузки.

Известен способ определения деформационных свойств объемных теплоизоляционных материалов и готовых образцов (патент RU 2231788 C1, 27.06.2004). Способ заключается в определении изменений параметров исследуемых образцов при сжатии их составным пуансоном, состоящим из центрального и наружного пуансонов, а испытания проводятся последовательно: сначала центральный пуансон нагружают усилием F1, затем наружный пуансон нагружают усилием F2, обеспечивающим равенство осадки под центральным и наружным пуансонами. Способ позволяет определить величину осадки центрального пуансона и исходную высоту образца при заданных значениях усилия F1. К недостатку способа относится невозможность его использования для определения изменения толщины объемно-упругой защитной конструкции одежды как следствия воздействия аэродинамической нагрузки.

Известен способ определения миграции волокон утеплителя через пакет одежных материалов (патент SU 1716437 A1, 28.02.1989), заключающийся в формировании многослойного пакета, в виде полого цилиндра, состоящего из материалов подкладки, утеплителя и верха и размещении его на цилиндрической оправке из диэлектрического материала. Подготовленный таким образом образец помещают в замкнутую камеру со стенками из диэлектрического материала и подвергают неориентированному механическому воздействию. К недостатку способа относится невозможность его использования для определения изменения толщины объемно-упругой защитной конструкции одежды как следствия воздействия аэродинамической нагрузки.

Наиболее близким техническим решением является способ и устройство для определения конвективного теплообмена и скорости испарения влаги в системе человек-одежда-окружающая среда (патент RU 2205403 C1, 27.05.2003). Способ заключается в том, что для определения конвективного теплообмена и скорости испарения влаги в системе человек-одежда-окружающая среда используют измерительное устройство, оснащенное аэродинамическим приспособлением с воздухозаборниками, оснащенными приборами для измерения расхода, температуры и влажности воздуха до и после контакта с поверхностью теплообмена. Устройство включает в себя физическую модель элемента тела человека, выполненную в виде вертикального цилиндра, установленного в центре аэродинамического приспособления. Известным способом определяют конвективный теплообмен, скорость и интенсивность испарения влаги с поверхности, моделирующей элемент тела человека. Однако данный способ не позволяет определить изменение толщины объемно-упругой защитной конструкции одежды как следствие воздействия аэродинамической нагрузки.

Анализ существующих методов (Недина В.Т., Сухарев М.И., Филиппов П.А. Исследование аэродинамических свойств текстильных материалов. // Известия вузов. Технология текстильной промышленности. - 1983. - №1 (151). - С.15-18; Патрашев А.Н. Гидромеханика. М.: Военно-морское издательство Военно-морского министерства союза ССР, 1953. - С.637-705; Stolwijk, J.R. A mathematical model of Physiological temperature regulation in man // Washington: Nat. Aeronaut and Space Admin, 1971. - P.23-31) по исследованию особенностей обтекания тела человека в одежде,показал, что определение силового воздействия потока воздуха на поверхность одежды целесообразно проводить на основе изучения силовых характеристик цилиндра с оболочками из пакета материалов в условиях однородного воздушного потока малых дозвуковых скоростей. В большинстве моделей имитация тела человека представляется цилиндром или набором геометрических тел.

Известна концепция геометрической идеализации тела человека Столвийка (Stolwijk J.R. A mathematical model of Physiological temperature regulation in man // Washington: Nat. Aeronaut and Space Admin, 1971. - P.23-31; Бринк И.Ю., Лебедева Е.О. Исследование воздействия ветра на пакеты теплозащитной одежды // Швейная промышленность, №3. 2005. - С.34-36.).

В настоящем способе предлагается использовать модельное представление туловища человека в виде цилиндра как характерную часть тела, в наибольшей степени определяющую его тепловой баланс, поверх которого имеется равномерный слой защитной конструкции одежды.

В основу способа положена задача исследования аэродинамической деформации при обтекании образца цилиндрической модели объемно-упругой защитной конструкции одежды дозвуковым потоком воздуха. Величина деформации определяется как изменение толщины образца под воздействием аэродинамической нагрузки.

Задачей настоящего технического решения является исследование аэродинамической деформации объемно-упругих защитных конструкций одежды и повышение объективности результатов определения путем приближения условий испытаний к эксплуатационным.

Техническим результатом изобретения является возможность исследования аэродинамической деформации объемно-упругих защитных конструкций одежды в лабораторных условиях и прогнозирование теплового состояния человека в реальных условиях на основе полученных экспериментальных сведений, повышение точности экспериментальных результатов, снижение стоимости при испытаниях и сокращение времени проведения испытаний.

Указанный технический результат достигается тем, что в способе определения аэродинамической деформации защитных конструкций одежды, включающем определение деформации объемно-упругих защитных конструкций одежды путем обдува образца в дозвуковой аэродинамической трубе с низкотурбулентным потоком воздуха, деформация объемно-упругих защитных конструкций одежды, происходящая под воздействием воздушного потока, фиксируется в рабочей зоне аэродинамической трубы с помощью цифровой фотосъемки, с последующей обработкой результатов с использованием программных продуктов.

Кроме того, указанный технический результат достигается тем, что образец объемно-упругих защитных конструкций одежды представляется в виде полого цилиндра (тора), исходя из модельного представления тела человека, покрытого равномерным слоем защитной конструкции одежды в виде цилиндра.

Предложенная модель поясняется фиг.1. Геометрические характеристики цилиндрической модели защитной конструкции одежды определяются его высотой h, м, внешним R, м и внутренним R0, м радиусами. Разность между внешним и внутренним радиусами представляет толщину δ такого цилиндра, то есть δ=R-R0, м; 1 - внешняя оболочка образца из покровной ткани, 2 - внутренняя оболочка образца из подкладочной ткани, 3 - объемный утеплитель.

Обработка результатов заключается в получении данных об изменении толщины образца на различных его участках. За изменение толщины образца принимается изменение геометрии торцевой поверхности образца цилиндрической модели объемно-упругой защитной конструкции одежды, контуры которой снимаются с фотоснимков в графическом редакторе. Полученные контуры торцевой поверхности, изображенные на фиг.2, представляют сечение образцов цилиндрической модели в горизонтальной плоскости. С помощью программного продукта измеряют расстояние между двумя точками образца, то есть его толщину. Измерения проводятся с точностью до 0,001 м.

Предлагаемый способ опробован в лабораторных условиях.

Заявленное изобретение позволит обеспечить исследование аэродинамической деформации защитной конструкции одежды в лабораторных условиях и прогнозирование теплового состояния человека в реальных условиях на основе полученных экспериментальных сведений, снизить стоимость при испытаниях, сократить время проведения испытаний, повысить точность экспериментальных результатов.

Источники информации

1. Патент RU 2407998 C2, 27.12.2010.

2. Патент RU 2460982 C1, 10.09.2012;

3. Патент US 6820477 B2, 23.11.2004;

4. ГОСТ 12023-2003. Материалы текстильные и изделия из них. Метод определения толщины [Текст]. - М.: Стандартинформ, 2005. 11 с.

5. Патент RU 2231788 C1, 27.06.2004.

6. Патент SU 1716437 Al, 28.02.1989.

7. Патент RU 2205403 C1, 27.05.2003.

Похожие патенты RU2537122C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ ДЕФОРМАЦИИ ВСПЕНЕННЫХ ОДЕЖДНЫХ МАТЕРИАЛОВ 2015
  • Черунова Ирина Викторовна
  • Сирота Елена Николаевна
  • Корнев Николай Владимирович
  • Лесникова Татьяна Юрьевна
RU2622497C1
КОНСТРУКЦИЯ ПАКЕТА СПЕЦИАЛЬНОЙ ОДЕЖДЫ С ПОВЫШЕННОЙ УСТОЙЧИВОСТЬЮ К АЭРОДИНАМИЧЕСКОЙ ДЕФОРМАЦИИ 2013
  • Лебедева Елена Олеговна
  • Бринк Иван Юрьевич
  • Матузова Светлана Юрьевна
RU2535275C2
НЕФТЕЗАЩИТНЫЙ КОМБИНЕЗОН С МОДИФИЦИРОВАННЫМ УТЕПЛИТЕЛЕМ 2015
  • Черунова Ирина Викторовна
  • Куренова Ирина Васильевна
  • Корнев Николай Владимирович
  • Черунов Павел Владимирович
RU2636927C2
АЭРОДИНАМИЧЕСКАЯ ТРУБА С РАБОЧЕЙ ЧАСТЬЮ ОТКРЫТОГО ТИПА ДЛЯ КЛАССИЧЕСКИХ И ВЕТРОВЫХ ИССЛЕДОВАНИЙ 2010
  • Леонов Геннадий Алексеевич
  • Цветков Алексей Иванович
RU2462695C2
КОНСТРУКЦИЯ ПАКЕТА СПЕЦИАЛЬНОЙ ОДЕЖДЫ С НЕСВЯЗНЫМ УТЕПЛИТЕЛЕМ С ПОВЫШЕННОЙ УСТОЙЧИВОСТЬЮ К ДЕФОРМАЦИИ 2021
  • Бринк Иван Юрьевич
  • Сироткин Александр Юрьевич
  • Редькина Ольга Васильевна
  • Ширшов Евгений Евгеньевич
RU2756990C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ТЕПЛООБМЕНА В СИСТЕМЕ "ЧЕЛОВЕК-ОДЕЖДА-ОКРУЖАЮЩАЯ СРЕДА" 2001
  • Иоэль Б.М.
  • Уваров Г.А.
  • Уваров А.В.
RU2216725C2
КОМПОЗИЦИОННЫЙ УТЕПЛИТЕЛЬ 2015
  • Черунова Ирина Викторовна
  • Бринк Иван Юрьевич
RU2629174C2
КОНСТРУКЦИЯ ПАКЕТА ОДЕЖДЫ С НЕТКАНЫМ УТЕПЛИТЕЛЕМ С ПРОСТЕГИВАНИЕМ 2021
  • Руденко Любовь Владимировна
RU2772168C1
ТЕПЛОЗАЩИТНАЯ (ТЕПЛОСБЕРЕГАЮЩАЯ) ОДЕЖДА 1997
  • Костюков В.В.
RU2129815C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ШВЕЙНЫХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Сучилин Владимир Алексеевич
  • Архипова Татьяна Николаевна
RU2538725C2

Иллюстрации к изобретению RU 2 537 122 C1

Реферат патента 2014 года СПОСОБ ОПРЕДЕЛЕНИЯ АЭРОДИНАМИЧЕСКОЙ ДЕФОРМАЦИИ ЗАЩИТНЫХ КОНСТРУКЦИЙ ОДЕЖДЫ

Изобретение относится к области швейного материаловедения, в частности к способу исследования процессов деформации защитных конструкций одежды под действием аэродинамической нагрузки. Способ определения аэродинамической деформации защитных конструкций одежды заключается в том, что объемно-упругие защитные конструкции одежды представляются моделью цилиндра и помещаются в дозвуковую аэродинамическую трубу с низкотурбулентным потоком воздуха и рабочей зоной, выполненной из прозрачного материала. Деформация объемно-упругих защитных конструкций одежды, происходящая под воздействием воздушного потока, фиксируется в рабочей зоне аэродинамической трубы с помощью цифровой фотосъемки, с последующей обработкой результатов с использованием программных продуктов. Заявленное изобретение позволит обеспечить исследование аэродинамической деформации защитной конструкции одежды в лабораторных условиях и прогнозирование теплового состояния человека в реальных условиях на основе полученных экспериментальных сведений, снизить стоимость при испытаниях, сократить время проведения испытаний, повысить точность экспериментальных результатов. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 537 122 C1

1. Способ определения аэродинамической деформации защитных конструкций одежды, включающий определение деформации объемно-упругих защитных конструкций одежды путем обдува образца в дозвуковой аэродинамической трубе с низкотурбулентным потоком воздуха, отличающийся тем, что деформация объемно-упругих защитных конструкций одежды, происходящая под воздействием воздушного потока, фиксируется в рабочей зоне аэродинамической трубы с помощью цифровой фотосъемки, с последующей обработкой результатов с использованием программных продуктов.

2. Способ определения аэродинамической деформации защитных конструкций одежды по п.1, отличающийся тем, что образец объемно-упругих защитных конструкций одежды представляется в виде полого цилиндра, при этом геометрические характеристики цилиндрической модели защитной конструкции одежды определяются его высотой h, м, внешним R, м и внутренним R0, м радиусами, причем разность между внешним и внутренним радиусами представляет толщину δ такого цилиндра, то есть δ=R-R0, м, при этом величину аэродинамической деформации определяют как толщину δ образца под действием аэродинамической нагрузки.

Документы, цитированные в отчете о поиске Патент 2014 года RU2537122C1

СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНВЕКТИВНОГО ТЕПЛООБМЕНА И СКОРОСТИ ИСПАРЕНИЯ ВЛАГИ В СИСТЕМЕ "ЧЕЛОВЕК - ОДЕЖДА - ОКРУЖАЮЩАЯ СРЕДА" 2002
  • Уваров Г.А.
  • Уваров А.В.
RU2205403C1
Прибор для определения структуры пористых тел 1952
  • Александров В.А.
  • Плаченко Т.Г.
SU104315A1
СПОСОБ ВИЗУАЛИЗАЦИИ ТЕЧЕНИЯ ГАЗА ИЛИ ЖИДКОСТИ НА ПОВЕРХНОСТИ ОБЪЕКТА 2005
  • Мошаров Владимир Евгеньевич
  • Радченко Владимир Николаевич
  • Орлов Анатолий Антонович
RU2288476C1
RU201101545 A1, 30.08.2012
DE 201006013800 U1, 21.12.2006
DE 4115088 A1, 12.11.1992
US 1010326221 A1, 30.12.2010

RU 2 537 122 C1

Авторы

Лебедева Елена Олеговна

Бринк Иван Юрьевич

Матузова Светлана Юрьевна

Даты

2014-12-27Публикация

2013-04-26Подача