Изобретение относится к электротехнике и может быть использовано при проектировании, монтаже, наладке и эксплуатации четырехпроводных линий электропередачи (ЛЭП), при передаче электрической энергии по проводам ЛЭП от источника питания к потребителю.
Передача электрической энергии по протяженным ЛЭП, а также электрическая энергии повышенной частоты по сравнительно непротяженным ЛЭП обеспечивается: по одно- и двухпроводным ЛЭП одной парой волн электромагнитного поля (падающей и отраженной); по трехпроводным - тремя парами; по четырехпроводной - четырьмя и т.д. [1, 2].
В результате согласования ЛЭП с электрической нагрузкой пропускная способность линий электропередачи повышается из-за исключения отраженной волны электромагнитного поля. Кроме того, уменьшается степень искажения кривых напряжения и тока, увеличивается надежность функционирования электрического оборудования, нормализуется работа релейной защиты, автоматики и связи, улучшается экологическая обстановка в районе эксплуатации ЛЭП и в месте, где расположен источник питания электрической энергии.
Известно условие согласованного режима работы однопроводной ЛЭП [2], обусловленное дифференциальным уравнением второго порядка [2-6], на основании которого работает устройство [патент RU 2390924], где реализовано согласование однопроводной протяженной высоковольтной ЛЭП. Однако четырехпроводная ЛЭП, описываемая математической моделью, полученной на основании решения характеристического уравнения восьмого порядка, не может быть согласована одним лишь условием согласованного режима [2] из-за специфичности распространения напряжений и токов по четырехпроводной ЛЭП [1].
Известны способы согласования линий связи с нагрузкой [7, патент RU 2381627]. Однако применяемые здесь технические элементы, такие как дифференциальный усилитель, дифференциальные резисторы, не предназначены для работы на высоком напряжении, к примеру 1 кВ, а это значит, что специфика реализации способов [7, патент RU 2381627] достаточно своеобразна и неприменима в протяженных линиях электропередачи высокого напряжения.
Задача изобретения - формирование способа согласования однородной несимметричной четырехпроводной ЛЭП с электрической нагрузкой.
Технический результат заключается в обеспечении условий согласования однородной несимметричной четырехпроводной высоковольтной линии электропередачи с электрической нагрузкой, выполнение которых повлечет за собой уменьшение потерь электрической энергии, повышение пропускной способности линии, уменьшение степени искажения кривых напряжения и тока.
Технический результат достигается тем, что способ согласования несимметричной однородной четырехпроводной линии электропередачи, входящей в состав несимметричной электроэнергетической системы с электрической нагрузкой, заключающийся в том, что исходная информация о напряжениях, токах и их частоте в линии через устройства сопряжения поступают в процессор, отличающийся тем, что в процессоре проверяются условия согласования четырехпроводной линии электропередачи с электрической нагрузкой для каждого провода линии в результате сравнения действительного (присутствующего в реальном времени на объекте) и эталонного (определенного при помощи специализированной программы) значений сопротивлений нагрузки, напряжений в конце линии или токов, поступающих в нагрузку, и формируются управляющие сигналы для корректирующих органов, в качестве которых могут быть использованы устройства РПН силовых трансформаторов с симметрирующими устройствами, реакторы и трехфазные или однофазные устройства, генерирующие ток и напряжение, такие как конденсаторные батареи, трехпроводная (без четвертого проводника от нейтрали источника питания и нагрузки) обобщенная нагрузка, имеющая в своем составе понижающий трансформатор, схема соединения первичной и вторичной обмотки которого звезда/звезда с выведенным нулевым проводом.
Корректирующие органы, в качестве которых могут быть использованы устройства РПН силовых трансформаторов с симметрирующими устройствами, используются без симметрирующих устройств.
Обобщенная нагрузка, которая может иметь в своем составе понижающий трансформатор, схема соединения первичной и вторичной обмотки которого звезда/звезда с выведенным нулевым проводом имеет понижающий трансформатор, схема соединения первичной и вторичной обмотки которого треугольник/звезда с выведенным нулевым проводом.
На рисунках показаны:
1 - корректирующий орган (К01), такой как РПН трансформатора;
2 - трансформатор (Т1), с симметрирующим устройством, питающий несимметричную однородную ЛЭП напряжением 35 кВ или меньше четырехпроводного исполнения (источник питания);
3 - устройства сопряжения (
), каковыми являются датчики напряжения и тока, спектроанализаторы, частотомеры, установленные в начале ЛЭП напряжением 35 кВ или меньше;
4 - аналого-цифровой преобразователь (АЦП);
5 - процессор (П);
6 - цифроаналоговый преобразователь (ЦАП);
7 - показывающий или самопишущий прибор (РО);
8 - несимметричная однородная ЛЭП напряжением 35 кВ или меньше четырехпроводного исполнения (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная);
9 - понижающий трансформатор (Т2(4)), с симметрирующим устройством, схема соединения первичной/вторичной обмотки: звезда с выведенным нулевым проводом/звезда с выведенным нулевым проводом, напряжением 10 кВ/0,4 кВ;
10 - устройства сопряжения (
), каковыми являются датчики напряжения и тока, спектроанализаторы, частотомеры, установленные на вторичной стороне понижающего трансформатора 9 (Т2(4));
11 (Т3), 26 (Т4), 25 (Т5), 31 (Т7) - блоки понижающих трансформаторов, напряжением 220 В/12 В;
12 - корректирующий орган (К02), такой как РПН понижающего трансформатора напряжением 10 кВ/0,4 кВ;
13 (VD1), 28 (VD2), 27 (VD3), 33 (VD4) - блоки преобразователей, фаза А;
14 - корректирующий орган (КОн.), трехпроводная (без четвертого проводника от нейтрали источника питания) обобщенная нагрузка;
15 - обобщенная электрическая нагрузка (ZНАГР.);
16 - корректирующий орган (КО3), такой как реакторы и трехфазные или однофазные устройства, генерирующие ток и напряжение, такие как конденсаторные батареи;
17 - действительное обобщенное сопротивление нагрузки (
), понижающего трансформатора 9 (Т2(4));
18 - эталонное обобщенное сопротивление нагрузки (
), понижающего трансформатора 9 (Т2(4));
19 - действительные амплитудные значения напряжения нагрузки (
), понижающего трансформатора 9 (Т2(4));
20 - действительные амплитудные значения тока нагрузки (
), понижающего трансформатора 9 (Т2(4));
21 - специализированная программа для прогнозирования величины основных характеристик электрической энергии в однородной несимметричной линии электропередачи четырехпроводного исполнения (FOUR-WIRE v LOO (1)), для формирования нагрузки понижающего трансформатора 9 (Т2(4)), у которого схема соединения первичной/вторичной обмотки: звезда с выведенным нулевым проводом/звезда с выведенным нулевым проводом, напряжением 10 кВ/0,4 кВ;
22 - эталонные величины токов (
), понижающего трансформатора 9 (Т2(4));
23 - эталонные величины напряжений (
), понижающего трансформатора 9 (Т2(4));
24 - логический блок (А1);
29 - понижающий трансформатор (Т6(3)), схема соединения первичной и вторичной обмотки: звезда/звезда с выведенным нулевым проводом, напряжением 10 кВ/0,4 кВ;
30 - устройства сопряжения (
), каковыми являются датчики напряжения и тока, спектроанализаторы, частотомеры, установленные на вторичной стороне понижающего трансформатора 29 (Т6(3)), схема соединения которого звезда/звезда с выведенным нулевым проводом;
32 - корректирующий орган (К04), такой как РПН понижающего трансформатора, напряжением 10 кВ/0,4 кВ;
34 - обобщенная электрическая нагрузка (
), корректирующего органа 14 (КОн.);
35 - корректирующий орган (КО5), такой как реакторы и трехфазные или однофазные устройства, генерирующие ток и напряжение, такие как конденсаторные батареи;
36 - устройства сопряжения (
), каковыми являются датчики напряжения и тока, спектроанализаторы, частотомеры, установленные в конце четырехпроводной однородной несимметричной ЛЭП напряжением 35 кВ или меньше 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) до точки подключения корректирующего органа 14 (КОн.);
37 - логический блок (А2), корректирующего органа 14 (КОн.);
38 - действительные амплитудные значения тока нагрузки, помноженные на коэффициент состояния режима (
), понижающего трансформатора 29 (Т6(3));
39 - действительные амплитудные значения тока нагрузки (
), понижающего трансформатора 29 (Т6(3));
40 - действительные амплитудные значения напряжения нагрузки (
)>понижающего трансформатора 29 (Т6(3));
41 - коэффициент состояния режима ((Kuz=1) или (Kuz=0)), равен единице в случае реализации заданной величины тока и напряжения четырехпроводной нагрузки понижающего трансформатора 9 (Т2(4)), питаемой от несимметричной однородной четырехпроводной линии 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) (рис.1), в противном случае 41 ((Kuz=1) или (Kuz=0)) имеет значение нуля;
42 - эталонные величины токов (
), понижающего трансформатора 29 (Т6(3)), помноженные на коэффициент состояния режима 41 ((Kuz=1) или (Kuz=0));
43 - эталонные величины напряжений (
), понижающего трансформатора 29 (Т6(3)), помноженные на коэффициент состояния режима 41 ((Kuz=1) или (Kuz=0));
44 - амплитудные действительные значения напряжения (
), которые в дальнейшем поступают на показывающий или самопишущий прибор 7 (РО);
45 - амплитудные действительные значения тока четырехпроводной нагрузки (
), которые в дальнейшем поступают на показывающий или самопишущий прибор 7 (РО);
46 - эталонное обобщенное сопротивление нагрузки (
), понижающего трансформатора 29 (Т6(3));
47 - действительные амплитудные значения напряжения нагрузки (
), понижающего трансформатора 29 (Т6(3)), помноженные на коэффициент состояния режима;
48 - действительное обобщенное сопротивление нагрузки (
), понижающего трансформатора 29 (Т6(3));
49 - определение разницы по напряжению (
);
50 - определение разницы по сопротивлению (
);
51 - эталонные величины токов (
), понижающего трансформатора 29 (Т6(3));
52 - эталонные величины напряжений (
), понижающего трансформатора 29 (Т6(3));
53 - специализированная программа (FOUR-WIRE v. 1.00 (2)) для прогнозирования величины основных характеристик электрической энергии согласованной однородной несимметричной линии электропередачи четырехпроводного исполнения 8 (ЛЭП 3 5кВ ИЛИ МЕНЬШЕ 4-х проводная);
54 - трансформатор (Т1(8)) без симметрирующего устройства, питающий ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная);
55 - понижающий трансформатор (Т2(9)) без симметрирующего устройства, схема соединения первичной/вторичной обмотки: звезда с выведенным нулевым проводом/звезда с выведенным нулевым проводом, напряжением 10 кВ/0,4 кВ;
56 - дополнительная ошибка по напряжению (ΔUO), определенная при помощи работы блока 10 (
);
57 - дополнительная ошибка по напряжению (ΔUP), определенная при помощи работы блока 30 (
);
58 - действительное значение частоты (f), токов и напряжений, определенных при помощи 10 (
); 3 (
); 36 (
) и 30 (
);
59 - понижающий трансформатор (Т8(3)) схема соединения первичной и вторичной обмотки: треугольник/звезда с выведенным нулевым проводом, напряжением 10 кВ/0,4 кВ.
Суть предлагаемой разработки заключается в реализации при помощи технических средств условий согласования четырехпроводной несимметричной однородной высоковольтной линии электропередачи с электрической нагрузкой [8], в формировании алгоритма обеспечения и стабилизации согласованного режима работы протяженной четырехпроводной ЛЭП.
Пусть будет необходимо выполнить согласование фазы (линейного провода) А с электрической нагрузкой. Для фаз (линейных проводов) В и С алгоритм согласования с электрической нагрузкой будет аналогичным, кроме величин обрабатываемых фазных напряжений, токов, сопротивлений, а также срабатывающих корректирующих органов.
На (рис.1) показан алгоритм обеспечения и стабилизации согласования четырехпроводной однородной несимметричной ЛЭП с электрической нагрузкой. Здесь в качестве объекта согласования использована несимметричная однородная ЛЭП напряжением 35 кВ или меньше четырехпроводного исполнения 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная). Кроме того, реализовано использование следующего электротехнического оборудования: трансформатора 2 (Т1) - трансформатора с симметрирующим устройством [9], питающего ЛЭП напряжением 35 кВ или меньше 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная); трансформатора с симметрирующим устройством 9 (Т2(4)) и трансформатора 11 (Т3), 26 (Т4), 25 (Т5) - это две различные группы понижающих трансформаторов, имеющих отличные друг от друга номинальные характеристики; блоков преобразователей 13 (VD1), 28 (VD2), 27 (VD3) - преобразователи тока и напряжения компьютеров, фаза А, представляющих в данном случае обобщенную четырехпроводную электрическую нагрузку 15 (
). Блоки 9 (Т2(4)), 11 (Т3), 26 (Т4), 25 (Т5), 13 (VD1), 28 (VD2), 27 (VD3) и 15 (
) образуют часть общего блока, полное сопротивление которого в случае реализации заданной величины тока и напряжения четырехпроводной нагрузки понижающего трансформатора 9 (Т2(4)) питаемой от несимметричной однородной четырехпроводной ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) определяется величиной 18 (
) (рис.2), а в иных случаях - 17 (
), (рис.2). В данном случае полное сопротивление 18 (
) является эталонной величиной, к которой должно стремиться действительное значение 17 (
). По достижении эталонной величины 18 (
) начинает работать следующая часть алгоритма.
Как уже было сказано блоки 9 (Т2(4)), 11 (Т3), 26 (Т4), 25 (Т5), 13 (VD1), 28 (VD2), 27 (VD3) и 15 (
) образуют лишь часть общего блока, здесь трансформатор 9 (Т2(4)) имеет схему соединения звезда с выведенным нейтральным проводом для первичной и вторичной обмоток, другую часть общего блока образуют: трансформатор 29 (Т6(3)) по схеме соединения звезда/звезда с выведенным нулевым проводом, блок понижающих трансформаторов 31 (Т7), напряжением 220 В/12 В, блок преобразователей 33 (VD4) - преобразователи тока и напряжения компьютеров, фаза А, представляющих в данном случае обобщенную электрическую нагрузку 34 (Z
Н). Блоки 29 (Т6(3)), 31 (Т7), 33 (VD4) и 34 (Z
Н) образуют часть общего блока, полное сопротивление которого позволит реализовать согласование несимметричной однородной четырехпроводной ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная).
Сопротивление согласованной однородной несимметричной четырехпроводной ЛЭП 35 кВ или меньше 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) определяется величинами 46 (
) и 18 (
), а в иных случаях соответственно - 48 (
) и 17 (
). В данном случае полные сопротивления 46(
) и 18 (
) являются эталонными величинами, к которым должны стремиться соответственно действительные значения 48 (
) и 17 (
), в процессе исполнения предлагаемого алгоритма.
Основным блоком работы алгоритма способа согласования четырехпроводной однородной несимметричной ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) с электрической нагрузкой является процессор 5 (П) (рис.1), где выполняется анализ сведений: о состоянии обобщенного сопротивления нагрузки 17 (
) или 18 (
) (рис.2) понижающего трансформатора 9 (Т2(4)) (рис.1); о состоянии обобщенного сопротивления нагрузки 48 (
) или 46 (
) понижающего трансформатора 29 (Т6(3)). Эти сведения в процессор 5 (П) поступают от устройств сопряжения, каковыми являются датчики тока, напряжения и частоты 3 (
); 10 (
); 30 (
) и 36 (
), где анализируемые характеристики электрической энергии доводятся до величин, воспринимаемых компьютерной техникой. Датчики 3 (
) устанавливаются и используются для сбора сведений о напряжениях и токах в начале исследуемой протяженной четырехпроводной однородной несимметричной ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) с последующей передачей информации на показывающий или самопишущий прибор 7 (РО). Датчики 10 (
) устанавливаются и используются для сбора сведений о напряжениях и токах, поступающих на вторичную сторону понижающего трансформатора 9 (Т2(4)), схема соединения которого звезда с выведенным нулевым проводом/звезда с выведенным нулевым проводом, напряжением 10 кВ/0,4 кВ. Датчики блока 30 (
) устанавливаются и используются для сбора сведений о напряжениях и токах, поступающих на вторичную сторону понижающего трансформатора 29 (Т6(3)), схема соединения которого звезда/звезда с выведенным нулевым проводом, напряжением 10кВ/0,4кВ, или поступающих на корректирующий орган 14 (КОн.). Датчики 36 (
) устанавливаются в конце линии электропередачи 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) и перед точкой подключения корректирующего органа 14 (КОн.) (подключение блока 8 (ЛЭП 35кВ ИЛИ МЕНЬШЕ 4-х проводная) к блоку трансформатора 29 (Т6(3)), схема соединения которого - звезда/звезда с выведенным нулевым проводом) с последующей передачей информации на показывающий или самопишущий прибор 7 (РО).
В качестве датчиков 3 (
); 10 (
); 30 (
) и 36 (
) могут быть использованы трансформаторы напряжения и тока, спектроанализаторы, частотомеры, а также делители напряжения и шунты переменного тока.
Аналого-цифровой преобразователь 4 (АЦП) (рис.1) позволяет сформированные в датчиках 3 (
); 10 (
); 30 (
) и 36 (
) аналоговые сигналы преобразовать в дискретные. Цифроаналоговый преобразователь 6 (ЦАП) позволяет сформированные в виде дискретных сигналов в процессоре 5 (П) команды корректирующим органам 1 (KО1), 12 (КО2), 14 (КОн.), 16 (КО3), 32 (КО4), 35 (КО5) преобразовать в аналоговые. В данном случае в качестве корректирующих органов 1 (KО1), 12 (КО2) и 32 (КО4) использованы устройства РПН силовых трансформаторов, в качестве блока корректирующего органа 14 (КОн.) выступает трехпроводная (без четвертого проводника от нейтрали источника питания), обобщенная нагрузка питаемая от понижающего трансформатора 29 (Т6(3)), схема соединения первичной и вторичной обмотки которого звезда/звезда с выведенным нулевым проводом, а в качестве корректирующего органа 16 (КО3) и 35 (КО5) - выступают реакторы и трехфазные или однофазные устройства, генерирующие ток и напряжение, такие как конденсаторные батареи, позволяющие изменять величину действительного полного сопротивления обобщенной нагрузки 17 (
); 48 (
) путем воздействия на технологический процесс и доводить его до эталонного значения сопротивления 18 (
); 46 (
), на (рис.1) эти воздействия изменяют обобщенную электрическую нагрузку 15 (ZНАГР.); 34 (Z
Н). Результаты действия описываемого алгоритма выводятся на показывающий или самопишущий прибор 7 (РО).
Схема алгоритма работы процессора 5 (П) представлена на (рис.2). Она достаточно проста: из 4 (АЦП) в процессор 5 (П) поступают амплитудные значения тока 20 (
), напряжения 19 (
)и значение их частоты 58 (f) нагрузки от устройств сопряжения блока 10 (
) (рис.1) и (рис.2), затем определяется величина 17 (
). Определенные таким образом величины 20 (
), 19 (
), 17 (
) подаются в следующий блок 24 (А1).
Блок 21 (FOUR-WIRE v. 1.00 (1)) на (рис.2) иллюстрирует использование в предлагаемом способе согласования несимметричной однородной четырехпроводной ЛЭП с электрической нагрузкой специализированной программы для прогнозирования величины основных характеристик электрической энергии в несимметричной однородной линии электропередачи четырехпроводного исполнения [10], которая входит в состав несимметричной электроэнергетической системы. На основании определенной частоты 58 (f), при помощи программы определяются действующие значения комплексных величин токов и напряжений, постоянные распространения волн электромагнитного поля по проводам ЛЭП, величины собственных и взаимных волновых сопротивлений. В блоках 22 (
) и 23 (
) формируются величины токов и напряжений, необходимые для питания понижающего трансформатора 9 (Т2(4)) (рис.1) схема соединения первичной/вторичной обмотки: звезда с выведенным нулевым проводом/звезда с выведенным нулевым проводом, напряжением 10 кВ/0,4 кВ, находящимся в конце четырехпроводного однородной несимметричной ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная), после точки подключения корректирующего органа 14 (КОн.) и после точки подключения блока 29 (Т6(3)). Эти токи и напряжения определяются следующим образом [8]:
1 случай (для первой постоянной распространения, первая пара волн электромагнитного поля):
;
;
,
где КТР - коэффициент трансформации понижающих трансформаторов 9 (Т2(4)) и 29 (Т6(3));
,
,
- фазные напряжения на клеммах источника питания (начало ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная)) от первой пары (условно) волн электромагнитного поля, определяемые по формулам:
,
,
- комплексные значения действующих величин фазных напряжений источника питания четырехпроводной однородной несимметричной ЛЭП, В;
,
,
- эталонные комплексные значения действующих величин фазных напряжений на вторичной стороне понижающего трансформатора 29 (Т6(3)) (рис.1), В;
,
,
- эталонные фазные напряжения на вторичной стороне понижающего трансформатора 9 (Т2(4)) (рис.1); γ1 - постоянная распространения первой пары волн электромагнитного поля; l - длина ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная), км;
,
,
- токи, передаваемые от источника питания (начало ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная)) от первой пары (условно) волн электромагнитного поля, определяемые по формулам
или
;
;
или
;
;
или
;
;
- комплексное значение действующей величины фазного напряжения нейтрали источника питания четырехпроводной однородной несимметричной ЛЭП, В;
,
,
,
- токи от источника питания четырехпроводной однородной несимметричной ЛЭП, А;
,
,
- эталонные токи электрической нагрузки трансформатора 9 (Т2(4)) (рис.1), схема соединения которого звезда с выведенным нейтральным проводом/звезда с выведенным нейтральным проводом (конец линии);
,
,
,
- собственные волновые сопротивления от первой пары (условно) волн электромагнитного поля ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная), Ом;
,
,
,
,
,
- взаимные волновые сопротивления от первой пары (условно) волн электромагнитного поля ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная), Ом;
,
,
- эталонные токи электрической нагрузки корректирующего органа 14 (КОн.) или токи электрической нагрузки трансформатора 29 (Т6(3)) (рис.1), А.
2 случай (для второй постоянной распространения, вторая пара волн электромагнитного поля):
;
;
,
где
,
,
- фазные напряжения на клеммах источника питания (начало ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная)) от второй пары (условно) волн электромагнитного поля, определяемые по формулам
γ2 - постоянная распространения второй пары волн электромагнитного поля;
,
,
- токи от источника питания (начало ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная)) от второй пары (условно) волн электромагнитного поля, определяемые по формулам
или
;
;
или
;
;
или
;
Б
,
,
,
- собственные волновые сопротивления от второй пары (условно) волн электромагнитного поля ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная), Ом;
,
,
,
,
,
- взаимные волновые сопротивления от второй пары (условно) волн электромагнитного поля ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная), Ом.
3 случай (для третьей постоянной распространения, третья пара волн электромагнитного поля):
;
;
,
где
,
,
- фазные напряжения на клеммах источника питания (начало ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная)) от третьей пары (условно) волн электромагнитного поля, определяемые по формулам
γ3 - постоянная распространения третьей пары волн электромагнитного поля;
,
,
- токи от источника питания (начало ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная)) от третьей пары (условно) волн электромагнитного поля, определяемые по формулам
или
;
;
или
;
;
или
;
;
,
,
,
- собственные волновые сопротивления от третьей пары (условно) волн электромагнитного поля ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная), Ом;
,
,
,
,
,
- взаимные волновые сопротивления от третьей пары (условно) волн электромагнитного поля ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная), Ом.
4 случай (для четвертой постоянной распространения, четвертая пара волн электромагнитного поля):
;
;
,
где
,
,
- фазные напряжения на клеммах источника питания (начало ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная)) от четвертой пары (условно) волн электромагнитного поля, определяемые по формулам
γ4 - постоянная распространения четвертой пары волн электромагнитного поля;
,
,
- токи от источника питания (начало ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная)) от четвертой пары (условно) волн электромагнитного поля, определяемые по формулам
или
;
;
или
;
;
или
;
;
,
,
,
- собственные волновые сопротивления от четвертой пары (условно) волн электромагнитного поля ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная), Ом;
,
,
,
,
,
- взаимные волновые сопротивления от четвертой пары (условно) волн электромагнитного поля ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная), Ом.
Поскольку нагрузка для каждого линейного провода ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) одна, а пар волн электромагнитного поля четыре распространяющихся по каждому линейному проводу, тогда очевидно и согласование каждого провода можно реализовать лишь для одной пары волн электромагнитного поля, а именно по вышеприведенным формулам: 1 случай (используются математические формулировки) или 2 случай, или 3 случай, или 4 случай.
Далее определяется эталонное полное сопротивление нагрузки 18 (
) (рис.2), какое оно должно быть для питания понижающего трансформатора 9 (Т2(4)) (рис.1). Полученные результаты отправляются в блок 24 (А1).
В блоке 24 (А1) (рис.3) выполняются логические операции. Здесь выполняется сравнение эталонных значений 18 (
), 23 (
) с действительными значениями, а именно: 17 (
) и напряжением 19 (
), полученных на вторичной стороне понижающего трансформатора 9 (Т2(4)). Здесь же из сопоставления этих величин определяются ошибки по сопротивлению ΔZ1, ΔZ2, ΔZ3 и по напряжению ΔU1, ΔU2, ΔU3. Затем определяются ошибки по току Δ101-05, Δ107, А108. При нулевых значениях ошибок по напряжению ошибки по току Δ106 и Δ109 отсутствуют, поэтому в их определении нет необходимости. Информация о величинах ΔZ1, ΔZ2, ΔZ3 и ΔU1, ΔU2, ΔU3 поступает в один из девяти блоков с приоритетом 2. Последующее действие описываемого алгоритма заключается в определении ошибок либо по сопротивлению ΔZ04p, ΔZ06p, ΔZ07p, ΔZ08p, ΔZ09p, либо по напряжению ΔU01p, ΔU02p, ΔU03Kр, ΔU05p. Полученные таким образом значения ошибок по напряжению поступают в блок суммы ошибок по напряжению
, а величины ошибок по сопротивлению попадают в блок суммы ошибок по сопротивлению
. Сведения о результатах расчета ошибок поступают в один или несколько блоков корректирующих органов 1, 12, 16 (KO1, КO2, КО3) (рис.1).
Здесь (рис.3) в качестве критерия функционирования корректирующих органов избрано несоответствие напряжения на вторичной стороне понижающего трансформатора 9 (Т2(4)) (рис.1) или сопротивления нагрузки. В принципе, в качестве такого критерия можно избрать и несоответствие тока понижающего трансформатора 9 (Т2(4)). Для этого в блоке
следует собирать ошибки по току, а затем в результате сопоставления эталонного и действительного значений токов в конце ЛЭП сформировать сигнал для корректирующих органов 1,12, 16 (KO1, КO2, КО3) (рис.1).
В процессе реализации стабилизации заданных величин токов и напряжений понижающего трансформатора 9 (Т2(4)) (рис.1) питаемого от однородной несимметричной ЛЭП напряжением 35 кВ или меньше четырехпроводного исполнения 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) выяснено (рис.3), что при: 19(
)>23(
) и 17 (
)>18 (
) - ошибка по току не определяется. В этом случае предусмотрено определение дополнительной ошибки по напряжению 56 (ΔUO) в виде произведения разницы между 23 (
) и 19 (
) и коэффициента состояния ΔIos1. Затем сведения об этой дополнительной ошибке отправляются в блок
.
Блок 24 (A1) (рис.3) реализован в среде National Instruments Lab VIEW 2009.
В то же время (рис.2) действительные величины, характеризующие электрическую энергию и присутствующие в реальном времени на объекте 17 (
) и 19 (
) сравниваются с величинами эталонными (рассчитанными при помощи специализированной программы), а именно с 23 (
) и 18 (
), на основании этого сравнения определяется, на сколько они отличны друг от друга, в результате получают величины 50 (
), 49 (
) и в случае, если это отличие минимально, тогда начинает работать следующая часть алгоритма (рис.2).
Здесь это схема алгоритма работы процессора 5 (П) для датчиков 30 (
), которая представлена на (рис.2). Здесь: из аналого-цифрового преобразователя 4 (АЦП) в процессор 5 (П) поступают амплитудные действительные значения тока 39 (
), напряжения 40 (
) и значение их частоты 58 (f) нагрузки, затем определяется действительная величина 48 (
), которая будет отлична от нуля и бесконечности, в случае реализации эталонной величины нагрузки понижающего трансформатора 9 (Т2(4)) (рис.1), питаемой от четырехпроводной однородной несимметричной ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) (рис.1). Определенные таким образом действительные величины 39 (
), 40 (
) (рис.2) умножаются на коэффициент 41 ((Kuz=1) или (Kuz=0)) и получают амплитудные действительные значения напряжения нагрузки 47 (
) и амплитудные действительные значения тока нагрузки 38 (
). Коэффициент 41 ((Kuz=1) или (Kuz=0)) равен единице в случае реализации эталонной величины нагрузки понижающего трансформатора 9 (Т2(4)) (рис.1) питаемой от четырехпроводной однородной несимметричной ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) (рис.1), здесь данное условие выполнено, когда ΔZ<0.2 и
<0.2, а Ku=1 и Kz=1, в ином случае 41 ((Kuz=1) или (Kuz=0)) равен нулю, полученные действительные величины совместно с действительной величиной 48(
) подаются в следующий блок 37 (А2).
Блок 53 (FOUR-WIRE v. 1.00 (2)) здесь на (рис.2) иллюстрирует использование в предлагаемом способе согласования несимметричной однородной четырехпроводной линии с электрической нагрузкой специализированной программы для прогнозирования величины основных характеристик электрической энергии в однородной линии электропередачи четырехпроводного несимметричного исполнения [10]. На основании определенной частоты 58 (f) при помощи программы определяются действующие значения комплексных величин токов и напряжений, постоянные распространения волн электромагнитного поля по проводам несимметричной однородной четырехпроводной ЛЭП, величины собственных и взаимных волновых сопротивлений. В блоках 51 (
) и 52 (
) (рис.2) формируются величины эталонных токов и напряжений для питания вторичной стороны понижающего трансформатора 29 (Т6(3)) (рис.1). Эти токи и напряжения определяются следующим образом [8]:
1 случай (для первой постоянной распространения, первая пара волн электромагнитного поля):
;
;
,
где
,
,
- фазные напряжения на клеммах электрической нагрузки:
;
;
,
,
,
- токи на клеммах электрической нагрузки.
2 случай (для второй постоянной распространения, вторая пара волн электромагнитного поля):
;
;
,
где
;
;
.
3 случай (для третьей постоянной распространения, третья пара волн электромагнитного поля):
;
;
,
где
;
;
.
4 случай (для четвертой постоянной распространения, четвертая пара волн электромагнитного поля):
;
;
,
где
;
;
.
Поскольку нагрузка у каждого линейного провода ЛЭП 8 (ЛЭП 35кВ ИЛИ МЕНЬШЕ 4-х проводная) одна, а пар волн электромагнитного поля четыре, распространяющихся по каждому линейному проводу, тогда очевидно и согласование каждого провода можно реализовать лишь для одной пары волн электромагнитного поля, а именно по вышеприведенным формулам: 1 случай (используются математические формулировки) или 2 случай, или 3 случай, или 4 случай.
Величины 51 (
) и 52 (
) (рис.2) умножаются на коэффициент 41 ((Kuz=1) или (Kuz=0)), который равен единице в случае достижения эталонной величины тока и напряжения четырехпроводной нагрузки понижающего трансформатора 9 (Т2(4)) (рис.1) питаемого от четырехпроводной однородной несимметричной ЛЭП 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) (рис.1), в противном случае 41 ((Kuz=1) или (Kuz=0)) (рис.2) имеет значение нуля, и получают эталонные амплитудные значения напряжения 43 (
) и тока 42 (
). Далее определяется полное эталонное сопротивление нагрузки 46) (рис.2).
Полученные величины отправляются в блок 37 (А2).
В блоке 37 (А2) (рис.4) выполняются логические операции. Здесь выполняется сравнение эталонных значений (рассчитанных величин при помощи специализированной программы) 46 (
), 43 (
) с действительным сопротивлением нагрузки 48 (
) и действительным напряжением 47(
), величин личин определенных при помощи устройств сопряжения 30 (
) (рис.1).
Здесь же из сопоставления этих величин определяются ошибки по сопротивлению ΔZ1, ΔZ2, ΔZ3 и по напряжению ΔU1, ΔU2, ΔU3. Затем определяются ошибки по току ΔI01-05, ΔI07, ΔI08. При нулевых значениях ошибок по напряжению ошибки по току ΔI06 и ΔI09 отсутствуют, поэтому в их определении нет необходимости. Информация о величинах ΔZ1, ΔZ2, ΔZ3 и ΔU1, ΔU2, ΔU3 поступает в один из девяти блоков с приоритетом 2. Последующее действие описываемого алгоритма заключается в определении ошибок либо по сопротивлению ΔZ04O, ΔZ06O, ΔZ07O, ΔZ08O, ΔZ09O, либо по напряжению ΔU01O, ΔU02O, ΔU03KO, ΔU05O. Полученные таким образом значения ошибок по напряжению поступают в блок суммы ошибок по напряжению
а величины ошибок по сопротивлению попадают в блок суммы ошибок по сопротивлению
. Сведения о результатах расчета ошибок поступают в один или несколько блоков корректирующих органов 14, 32, 35 (КОн, КO4, КO5) (рис.1).
Здесь (рис.4) в качестве критерия функционирования корректирующих органов избрано несоответствие напряжения вторичной нагрузки 29 (Т6(3)) четырехпроводной однородной несимметричной ЛЭП 35 кВ или меньше 8 (ЛЭП 35 кВ ИЛИ МЕНЬШЕ 4-х проводная) (рис.1), или сопротивления нагрузки. В принципе, в качестве такого критерия можно избрать и несоответствие тока вторичной нагрузки 29 (Т6(3)) (рис.1). Для этого в блоке
(рис.4) следует собирать ошибки по току, а затем в результате сопоставления эталонного и действительного значений токов на вторичной стороне понижающего трансформатора 29 (Т6(3)), сформировать сигнал для корректирующих органов 14, 32, 35 (КОн, КO4, КO5) (рис.1).
В процессе реализации стабилизации заданных величин токов и напряжений на вторичной стороне понижающего трансформатора 29 (Т6(3)) (рис.1) выяснено (рис.4), что при:
47(
)>43(
) и 48(
)>46(
) ошибка по току не определяется. В этом случае предусмотрено определение дополнительной ошибки по напряжению 57 (ΔUP) в виде произведения разницы между 43 (
) и 47 (
) и коэффициента состояния ΔIos1. Затем сведения об этой дополнительной ошибке отправляются в блок
.
Блок 37 (А2) (рис.4) реализован в среде National Instruments Lab VIEW 2009.
Блоки понижающих трансформаторов 2 (Т1) и 9 (Т2(4)) (рис.1) с симметрирующими устройствами могут быть заменены на блоки понижающих трансформаторов без симметрирующих устройств 54 (Т1(8)) и 55 (Т2(9)) (рис.5).
Блок понижающего трансформатора 29 (Т6(3)), схема соединения первичной и вторичной обмотки которого: звезда/звезда с выведенным нулевым проводом, напряжением 10 кВ/0,4 кВ (рис.1) может быть заменен блоком понижающего трансформатора 59 (Т8(3)), схема соединения первичной и вторичной обмотки которого: треугольник/звезда с выведенным нулевым проводом, напряжением 10 кВ/0,4 кВ (рис.6).
Источники информации
1. Болыпанин Г.А. Распределение электрической энергии пониженного качества по участкам электроэнергетических систем. В 2 кн. Кн. 21 Г.А.Болыпанин. - Братск: БрГУ, 2006, - 807 с.
2. Болыпанин Г.А. Распределение электрической энергии пониженного качества по участкам электроэнергетических систем. В 2 кн. Кн. 1/ Г.А.Болыпанин - Братск: БрГУ, 2006, - 807 с.
3. Веников В.А. Дальние электропередачи переменного и постоянного тока/ В.А.Веников, Ю.П.Рыжков. - М.: Энергоатомиздат, 1985.- 272 с.
4. Электрические системы. Передача энергии переменным и постоянным током высокого напряжения/Под Ред. В.А.Веникова. - М.: Высшая школа, 1972.-367 с.
5. Болыпанин Г.А. Коррекция качества электрической энергии/ Г.А.Болыпанин. - Братск: ГОУ ВПО «БрГУ», 2007.- 120 с.
6. Болыпанин Г.А. Распределение электрической энергии пониженного качества по однородному участку линии электропередачи четырехпроводного исполнения/ Г.А.Болыпанин, Л.Ю.Болыпанина// Системы. Методы. Технологии. - 2009. №3. - С.65-69.
7. Кэрки Д. Согласование выходного импеданса при помощи полностью дифференциальных операционных усилителей/ Д. Кэрки// Компоненты и технологии. - 2010. - №5. - С.150-154.
8. Козлов В.А. Условия согласования однородной несимметричной четырехпроводной высоковольтной линии электропередачи напряжением до 35 кВ с нагрузкой / В.А.Козлов, Г.А.Болынанин// Материалы VIII международной научно-практической конференции. - София: Бял ГРАД-БГ ООД, 2012.- С.67-71.
9. Сердешнов А. Симметрирующее устройство для трансформаторов. Средство стабилизации напряжения и снижения потерь в сетях 0,4 кВ./ А.Сердешнов, И.Протосовицкий, Ю.Леус, П.Шумра// Новости электротехники.- 2005.-№1.-С.14-15.
10. Свидетельство о государственной регистрации программы для ЭВМ №2010614157 "Расчет параметров трехфазной четырехпроводной линии электропередачи (FOUR-WIRE v. 1.00)"