МНОГОПЕРЕХОДНЫЙ КРЕМНИЕВЫЙ МОНОКРИСТАЛЛИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ОПТИЧЕСКИХ И РАДИАЦИОННЫХ ИЗЛУЧЕНИЙ Российский патент 2015 года по МПК H01L31/115 G01T1/24 

Описание патента на изобретение RU2539109C1

Настоящее изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию (э.д.с).

Известна конструкция (фиг.1) многопереходного (МП) кремниевого монокристаллического фотоэлектрического преобразователя (ФЭП), содержащая диодные ячейки (ДЯ) с размещенными на их светопринимающей поверхности светопросветляющего покрытия и с расположенными в них одиночными p+-n--n+ (p+-p--n+) переходами, в направлении, перпендикулярном светопринимающей поверхности, соединенными в единую конструкцию металлическими анодными и катодными электродами (1. Тюхов И.И. «Способ изготовления полупроводникового фотопреобразователя», патент РФ №2127472 от 10.03.1999; 2. Е.Г. Гук и др. Характеристики кремниевого многопереходного солнечного элемента с вертикальными p-n переходами. Ж-л. Физика и техника полупроводников. 1997 г. Т.31, №7 стр.855-858).

Такой ФЭП обладает невысоким КПД, (менее 12%), поскольку имеет относительно небольшой объем области пространственного заряда (ОПЗ) p-n-перехода, примыкающего к фоточувствительной поверхности ФЭП.

Известна конструкция (фиг.2) кремниевого многопереходного (МП) монокристаллического ФЭП, содержащая диодные ячейки с расположенными в них перпендикулярно горизонтальной (перпендикулярной к направлению света) светопринимающей поверхности вертикальными одиночными n+-p--p+(p+-n--n+) переходами и расположенными в солнечных элементах параллельно к светопринимающей поверхности горизонтальными n+-p- (p+-n-) переходами, все переходы соединены в единую конструкцию металлическими катодными и анодными электродами, расположенными соответственно на поверхности областей - n+(p+) типа перпендикулярных одиночных n+-p--p+(p+-n--n+) переходов (3. Мурашев В.Н и др. «Полупроводниковый фотопреобразователь и способ его изготовления», Патент РФ №2377695 от 27.12.2009).

Общими недостатками аналогов также является достижение немаксимально возможного КПД преобразователя и ограничение его области применения обязательным присутствием светового (оптического) излучения.

Целью изобретения является повышение КПД преобразователя, уменьшение его веса на единицу площади, расширение области его применения.

Цель достигается за счет:

- изменения конструкции ФЭП путем размещения на нижней и боковых поверхностях многопереходного монокристаллического кремниевого преобразователя (МПМКП) диэлектрика толщиной менее длины пробега радиационных частиц в диэлектрике и слоя радиоактивного металла толщиной, равной длине пробега электронов в металле. При этом расстояние между электродами диодных ячеек не превышает 2-х длин пробега радиационных частиц в кремнии;

- технологии изготовления путем замены алюминиевых прокладок-электродов на прокладки из радиоактивного никеля-63(63Ni) толщиной не более 20 мкм. Изготовления конструкции с шириной кремния между электродами диодных ячеек, не превышающей 100 мкм, осаждения оксида кремния на нижнюю и боковые поверхности конструкции толщиной не более 10 мкм. Осаждения на оксид слоя радиоактивного 63Ni толщиной 10-20 мкм.

Конструкция прототипа показана на рис.3.

На фиг.3 а, б, в соответственно показаны структура (сечение), вид сверху и снизу. МПКМП, который содержит диодные ячейки (ДЯ) 1 с нанесенным на них светопросветляющим покрытием 2, соединенные в единую конструкцию металлическими катодными 3 и анодными 4 электродами с расположенными соответственно на их поверхности полупроводниковыми областями - 5n+(p+) типа

и - 6p+(n+) типа одиночных вертикальных n+-p--p+(p+-n--n+) переходов. На верхней и нижней поверхностях ДЯ 1 расположены соответственно полупроводниковые области - 7n+(p+) типа - 8 p+(n+) типа горизонтальных n+-p-(p+-n-) переходов. На поверхности областей - 5 n+(p+) типа и - 6 p+(n+) типа расположены соответственно области - 9 p-(n-) типа и - 10 n-(p-) типа, образующие с ними соответственно одиночные n+-p-(p+-n-) и дополнительные p+-n-(n+-p-) переходы.

Конструкция МПКМП по изобретению показана на фиг.4, где на нижней и боковых поверхностях МПКМП расположен слой диэлектрика 11 толщиной менее длины пробега радиационных частиц в диэлектрике, на поверхности которого размещен слой радиоактивного металла 12 толщиной, равной длине пробега электронов в металле. При этом расстояние между электродами диодных ячеек не превышает 2-х длин пробега радиационных частиц в кремнии.

Пояснения.

Вышеуказанные ограничения носят принципиальный характер и обусловлены тем, что

- очевидно, что в случае превышения толщины диэлектрика длины пробега в нем электронов от 63Ni, имеющих энергию 63 кэВ и длину пробега в диэлектрике (оксиде) 40 мкм, электроны не смогут попасть в кремний и создать там ионизационный ток;

- толщина слоя 63Ni не должна превышать 2-е длины пробега в нем, в противном случае мала его эффективность использования;

- ширина монокремния между никелевыми электродами также не должна превышать 2-е длины пробега в нем, иначе электроны не смогут достичь ее центральной части и кремниевый материал не будет эффективно использован;

- оптимальной шириной является ширина, равная длине пробега электронов в кремнии, т.е. 45 мкм.

Технология изготовления изобретения.

Например, состоит из следующих технологических операций:

а) в пластины p--типа КДБ 10 Ом·см проводят ионное легирование фосфора дозой 2-4 мкКл с последующей разгонкой примеси в течение 4 часов при температуре 950°C;

б) затем формируют диффузией бора и фосфора p+- и n+-области;

в) спекают (сплавляют, сращивают) пластины в стопу через прокладки из радиоактивного 63Ni толщиной фольги 20 мкм;

г) режут стопку пластин на отдельные МКПМП;

д) полируют поверхность преобразователей и имплантируют в нижнюю и верхнюю поверхности ФП фосфор и бор дозой 50 и 40 мкКл соответственно и проводят фотонный отжиг радиационных дефектов;

е) наносят просветляющее покрытие (Si3N4) толщиной 0,15 мкм.

ж) наносят плазмохимический оксид кремния (SiO2) толщиной 1 мкм на поверхность конструкции МПКМП. Наносят резистивным напылением 63Ni толщиной 20 мкм на нижнюю и боковые поверхности конструкции МПКМП.

Технические преимущества изобретения.

Как видно из фиг.3 и 4, n- и p-области многопереходного кремниевого преобразователя образуют конструкцию, что дает возможность реализации максимального объема области пространственного заряда, в которой наиболее эффективно собираются генерированные светом и радиационным излучением носители заряда при минимальном весе на единицу площади преобразователя.

Следует отметить, что совмещение в единой функционально-интегрированной «гибридной» конструкции преобразователя солнечного и радиационного излучения дает в ряде применений таким источникам э.д.с. важные преимущества, а именно:

- возможность обеспечить зарядку аккумулятора при отсутствии солнечного света при минимальном ее весе, что важно, например, для применения в солнечных батареях беспилотных летательных аппаратов, взрывоопасных помещениях - шахтах, ночных индикаторах, расположенных в труднодоступных местах и т.д.;

- возможность дополнительного существенного повышения КПД на несколько %, преобразователя энергии по сравнению с эквивалентной по площади обычной кремниевой солнечной батареей;

- теоретически, срок службы такого преобразователя определяется периодом полураспада радиационного материала, который для 63Ni составляет 50 лет, что более чем достаточно в большинстве применений.

Похожие патенты RU2539109C1

название год авторы номер документа
Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления 2015
  • Леготин Сергей Александрович
  • Мурашев Виктор Николаевич
  • Краснов Андрей Андреевич
  • Кузьмина Ксения Андреевна
  • Диденко Сергей Иванович
  • Омельченко Юлия Константиновна
  • Старков Виталий Васильевич
  • Ельников Дмитрий Сергеевич
  • Орлова Марина Николаевна
RU2608302C1
КРЕМНИЕВЫЙ МНОГОПЕРЕХОДНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ С НАКЛОННОЙ КОНСТРУКЦИЕЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2012
  • Мурашев Виктор Николаевич
  • Леготин Сергей Александрович
  • Барышников Федор Михайлович
  • Симакин Виктор Васильевич
  • Абдуллаев Олег Рауфович
  • Леготина Нина Геннадьевна
  • Краснов Андрей Андреевич
RU2513658C2
КРЕМНИЕВЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ С ГРЕБЕНЧАТОЙ КОНСТРУКЦИЕЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2012
  • Мурашев Виктор Николаевич
  • Леготин Сергей Александрович
  • Симакин Виктор Васильевич
  • Корольченко Алексей Сергеевич
  • Тюхов Игорь Иванович
  • Абдуллаев Олег Рауфович
  • Леготина Нина Геннадьевна
  • Краснов Андрей Андреевич
  • Приходько Наталья Илларионовна
RU2502156C1
ПЛАНАРНЫЙ ВЫСОКОВОЛЬТНЫЙ ФОТО- И БЕТАВОЛЬТАИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2015
  • Нагорнов Юрий Сергеевич
RU2605783C1
ПЛАНАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2015
  • Мурашев Виктор Николаевич
  • Леготин Сергей Александрович
  • Краснов Андрей Андреевич
  • Яромский Валерий Петрович
  • Омельченко Юлия Константиновна
  • Кузьмина Ксения Андреевна
RU2599274C1
Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления 2017
  • Мурашев Виктор Николаевич
  • Леготин Сергей Александрович
  • Краснов Андрей Андреевич
  • Диденко Сергей Иванович
  • Кузьмина Ксения Андреевна
  • Синева Мария Владимировна
RU2659618C1
Высоковольтный преобразователь ионизирующих излучений и способ его изготовления 2015
  • Мурашев Виктор Николаевич
  • Леготин Сергей Александрович
  • Краснов Андрей Андреевич
  • Диденко Сергей Иванович
  • Абдуллаев Олег Рауфович
RU2608313C2
Преобразователь оптических и радиационных излучений и способ его изготовления 2015
  • Леготин Сергей Александрович
  • Мурашев Виктор Николаевич
  • Краснов Андрей Андреевич
  • Диденко Сергей Иванович
  • Борзых Ирина Вячеславовна
  • Рабинович Олег Игоревич
  • Ельников Дмитрий Сергеевич
  • Омельченко Юлия Константиновна
  • Кузьмина Ксения Андреевна
  • Евтушенко Наталья Ивановна
RU2608311C2
Компактный бетавольтаический источник тока длительного пользования с бета-эмиттером на базе радиоизотопа Ni и способ его получения 2016
  • Магомедбеков Эльдар Парпачевич
  • Меркушкин Алексей Олегович
  • Веретенникова Галина Владимировна
  • Кузнецов Александр Альбертович
  • Молин Александр Александрович
RU2641100C1
КВАНТОВО-РАДИОИЗОТОПНЫЙ ГЕНЕРАТОР ПОДВИЖНЫХ НОСИТЕЛЕЙ ЗАРЯДА И ФОТОНОВ В КРИСТАЛЛИЧЕСКОЙ РЕШЕТКЕ ПОЛУПРОВОДНИКА 2015
  • Войтович Виктор Евгеньевич
  • Гордеев Александр Иванович
  • Думаневич Анатолий Николаевич
RU2654829C2

Иллюстрации к изобретению RU 2 539 109 C1

Реферат патента 2015 года МНОГОПЕРЕХОДНЫЙ КРЕМНИЕВЫЙ МОНОКРИСТАЛЛИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ОПТИЧЕСКИХ И РАДИАЦИОННЫХ ИЗЛУЧЕНИЙ

Изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию (э.д.с). Согласно изобретению предложен кремниевый монокристаллический многопереходный фотоэлектрический преобразователь оптических и радиационных излучений, содержащий диодные ячейки с расположенными в них перпендикулярно горизонтальной светопринимающей поверхности вертикальными одиночными n+-p--p+(p+-n--n+) переходами и расположенными в диодных ячейках параллельно к светопринимающей поверхности горизонтальными n+-p-(p+-n-) переходами, причем все переходы соединены в единую конструкцию металлическими катодными и анодными электродами, расположенными соответственно на поверхности областей n+(p+) типа вертикальных одиночных n+-p--p+(p+-n--n+) переходов, при этом он содержит в диодных ячейках дополнительные вертикальные n+-p-(p+-n-) переходы, причем их области n+(p+) типа подсоединены соответственно областями n+(p+) типа n+-p-(p+-n-) горизонтальных переходов к областям - n+(p+) типа вертикальных одиночных n+-p--p+(p+-n--n+) переходов, при этом на его нижней и боковых поверхностях расположен слой диэлектрика толщиной менее длины пробега радиационных частиц в диэлектрике, на поверхности которого размещен слой радиоактивного металла толщиной, равной длине пробега электронов в металле, при этом расстояние между электродами диодных ячеек не превышает 2-х длин пробега радиационных частиц. Также предложен способ изготовления описанного выше кремниевого монокристаллического многопереходного фотоэлектрического преобразователя оптических и радиационных излучений. Изобретение обеспечивает повышение КПД преобразователей энергии излучения в электрическую энергию, уменьшение их веса на единицу площади и расширение области их применения. 2 н.п. ф-лы, 4 ил.

Формула изобретения RU 2 539 109 C1

1. Кремниевый монокристаллический многопереходный фотоэлектрический преобразователь оптических и радиационных излучений, содержащий диодные ячейки с расположенными в них перпендикулярно горизонтальной светопринимающей поверхности вертикальными одиночными n+-p--p+(p+-n--n+) переходами и расположенными в диодных ячейках параллельно к светопринимающей поверхности горизонтальными n+-p-(p+-n-) переходами, причем все переходы соединены в единую конструкцию металлическими катодными и анодными электродами, расположенными соответственно на поверхности областей n+(p+) типа вертикальных одиночных n+-p--p+(p+-n--n+) переходов, при этом он содержит в диодных ячейках дополнительные вертикальные n+-p-(p+-n-) переходы, причем их области n+(p+) типа подсоединены соответственно областями - n+(p+) типа n+-p-(p+-n-) горизонтальных переходов к областям - n+(p+) типа вертикальных одиночных n+-p--p+(p+-n--n+) переходов, отличающийся тем, что на его нижней и боковых поверхностях расположен слой диэлектрика толщиной менее длины пробега радиационных частиц в диэлектрике, на поверхности которого размещен слой радиоактивного металла толщиной, равной длине пробега электронов в металле, при этом расстояние между электродами диодных ячеек не превышает 2-х длин пробега радиационных частиц.

2. Способ изготовления преобразователя по п.1, включающий формирование на поверхности пластин из монокристаллического кремния вертикальных одиночных n+-p--p+(p+-n--n+) переходов, металлизацию поверхности пластин, сборку пластин в столбик с прокладками из алюминиевой фольги, сплавление в вакуумной печи, резанье столбика на структуры, формирование горизонтальных n+-p-(p+-n-) переходов, присоединение токовыводящих контактов и нанесение диэлектрического светопросветляющего покрытия, при этом до формирования на поверхности пластин из монокристаллического кремния одиночных вертикальных n+-p--p+(p+-n--n+) переходов, в объеме пластин формируют слаболегированные дополнительные вертикальные n+-p-(p+-n-) переходы, затем формируют вертикальные одиночные переходы, затем после резки пластин формируют горизонтальные n+-p-(p+-n-) переходы, при этом концентрация примеси в дополнительных горизонтальных n+-p-(p+-n-) переходах более чем на порядок меньше величины концентрации примеси в горизонтальных n--p+(p--n+) переходах, у которых, в свою очередь, концентрация примеси на порядок меньше величины концентрации примеси в областях - n+(p+) типа вертикальных одиночных переходов, отличающийся тем, что пластины из монокристаллического кремния выполняются толщиной, не превышающей 100-300 мкм, а металлические прокладки выполняют из радиоактивного 63Ni толщиной не более 20 мкм, при этом на нижнюю и боковые поверхности конструкции осаждают оксид кремния толщиной не более 10 мкм, на который осаждается слой радиоактивного 63Ni толщиной 10-20 мкм.

Документы, цитированные в отчете о поиске Патент 2015 года RU2539109C1

RU2011130255, 27.01.3013
ПОЛУПРОВОДНИКОВЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2008
  • Мурашев Виктор Николаевич
  • Симакин Виктор Васильевич
  • Тюхов Игорь Иванович
  • Лагов Петр Борисович
  • Стребков Дмитрий Семенович
  • Котов Андрей Викторович
RU2377695C1
US2013240744A1, 19.09.2013
US2010148079A1, 17.06.2010
US2005263708A1, 01.12.2005
US6465857B1, 15.10.2002A

RU 2 539 109 C1

Авторы

Мурашев Виктор Николаевич

Леготин Сергей Александрович

Леготин Александр Николаевич

Мордкович Виктор Наумович

Краснов Андрей Андреевич

Даты

2015-01-10Публикация

2013-09-26Подача