Настоящее изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию (э.д.с.).
Известны конструкции трехмерных - (3D) преобразователей оптических и радиационных излучений в электрическую энергию [1. Мурашев В.Н и др. «Полупроводниковый фотопреобразователь и способ его изготовления», Патент РФ №2377695 от 27.12.2009; 2. Мурашев В.Н., Леготин С.А. и др. «Кремниевый фотоэлектрический преобразователь с гребенчатой конструкцией и способ его изготовления», заявка на изобретение №2012130896 от 20.07.12, решение о выдаче патента от 2013.08.07; 3. Долгий А.Л. Бета-преобразователи энергии на основе макропофигтого кремния // 4-ая Международная научная конференция «Материалы и структуры современной электроники», 23-24 сентября 2010 г., Минск, Беларусь. С. 57-60; 4. Clarkson J.P., Sun W., Hirschman K.D., Gadeken L.L. and Fauchet P.M. Betavoltaic and photovoltaic energy conversion in three-dimensional macroporous silicon diodes // Physica status solidi (a). 2007. V. 204. N 5. P. 1536-1540]. Такие преобразователи не обладают максимально возможной эффективностью, поскольку преобразуют энергию либо оптического [1. Мурашев В.Н и др. «Полупроводниковый фотопреобразователь и способ его изготовления», Патент РФ №2377695 от 27.12.2009; 2. Мурашев В.Н., Леготин С.А. и др. «Кремниевый фотоэлектрический преобразователь с гребенчатой конструкцией и способ его изготовления», заявка на изобретение №2012130896 от 20.07.12, решение о выдаче патента от 2013.08.07], либо только радиационного бета- или альфа-излучений [3. Долгий А.Л. Бета-преобразователи энергии на основе макропористого кремния // 4-я Международная научная конференция «Материалы и структуры современной электроники», 23-24 сентября 2010 г., Минск, Беларусь. С. 57-60; 4. Clarkson J.P., Sun W., Hirschman K.D., Gadeken L.L. and Fauchet P.M. Betavoltaic and photovoltaic energy conversion in three-dimensional macroporous silicon diodes // Physica status solidi (a). 2007. V. 204. N 5. P. 1536-1540; 5. Sun W., Kherani N.P., Hirschman K.D., Gadeken L.L. and Fauchet P.M. A Three-Dimensional Porous Silicon p-n Diode for Betavoltaics and Photovoltaics // Advanced Materials. 2005. V. 17. N 10. P. 1230-1233; 6. Chandrashekhar M.V.S, Thomas Ch. I., Spencer M.G. Betavoltaic cell. 2011. USA Patent. US 7939986 B2; 7. Gadeken L.L., Engel P.S., Laverdure K.S. Apparatus for generating electrical current from radioactive material and method of making same. 2008. USA Patent. US 20080199736 A1].
Известна «щелевая» конструкция полупроводниковых вольтаических преобразователей радиационных бета-излучений в электрическую энергию [6. Chandrashekhar M.V.S, Thomas Ch. I., Spencer M.G. Betavoltaic cell. 2011. USA Patent. US7939986B2], (фиг. 1), взятая за прототип и содержащая в полупроводниковой пластине n(p) типа проводимости вертикальные щели или каналы на поверхности, в которых расположены вертикальные p-n-переходы и которые заполнены материалом радиоактивного изотопа.
Способ ее изготовления, включающий формирование в объеме пластины n(p) типа проводимости щелей или каналов, диффузионное легирование поверхности каналов примесью p(n) типа, осаждение на поверхность пластины и полость щелей или каналов материала радиоактивного изотопа.
Общими недостатками аналогов и прототипа является ограничение его области применения из-за использования только радиоактивного бета-излучения.
Техническим результатом изобретения является расширение области применения преобразователя на оптический диапазон излучений, повышение его эффективности и упрощение технологии изготовления.
Технический результат достигается изменением конструкции преобразователя за счет устранения материала изотопа за пределами щелей на поверхности горизонтальных p-n-переходов пластины и размещения на их поверхности диэлектрического слоя, прозрачного для излучения оптического диапазона.
Способ ее изготовления включает формирование на поверхности пластин n(p) типа проводимости диффузией примеси p(n) типа горизонтальных p-n-переходов и осаждения диэлектрического слоя, прозрачного для излучения оптического диапазона, формирование в объеме пластины травлением полупроводника селективно к диэлектрику щелей или каналов, диффузионное легирование поверхности каналов примесью p(n) типа, осаждение на поверхность пластины и в каналы материала радиоактивного изотопа, удаление материала изотопа с поверхности диэлектрического слоя.
Конструкция прототипа показана на фиг. 1.
Здесь 1 - полупроводниковая пластина n(p) типа проводимости, 2-n+(p+) - сильнолегированный контактный слой, 3 - p(n) область вертикальных p-n-переходов, 4 - p(n) область горизонтальных p-n-переходов, 5 - материал радиоактивного изотопа.
Конструкция преобразователя по изобретению показана на фиг. 2.
Здесь 1 - полупроводниковая пластина n(p) типа проводимости, 2-n+(p+) - сильнолегированный контактный слой, 3 - p(n) область вертикальных p-n-переходов, 4 - p(n) область горизонтальных p-n-переходов, 5 - материал радиоактивного изотопа, 6 - диэлектрический слой, прозрачный для излучения оптического диапазона.
Технология изготовления преобразователя по изобретению показана на фиг. 3, которая состоит из следующей последовательности технологических операций:
а) в обратную сторону пластины n--типа КЭФ 5 кΩ⋅см ориентацией (100) проводят ионное легирование фосфора дозой 300 мкКл с энергией 50 кэВ с последующей разгонкой примеси в течение 30 минут при температуре 950°C;
затем формируют p-область горизонтальных переходов ионным легированием в лицевую сторону пластины ионов бора дозой 10 мкКл с энергией 30 кэВ с последующим отжигом радиационных дефектов в течение 40 минут при температуре 950°C;
выращивают оксид кремния на лицевой поверхности пластины толщиной 0,3 мкм при температуре 1050°C в течение 20 минут.
б) затем проводят фотолитографию и травят глубокие щели в оксиде, а затем в кремнии;
проводят диффузию бора (или плазменное ионное легирование бора) при температуре 900°C в течение 20 минут и удаляют боросиликатное стекло;
в) осаждают электролизом радиоактивный 63Ni толщиной 2,5-3,2 мкм;
г) проводят фотолитографию и удаляют никель 63Ni с поверхности диэлектрика;
д) режут пластины на отдельные кристаллы.
Пример практической реализации конструкции
Предлагаемый преобразователь может быть реализован на пластинах кремния КЭФ 5 кΩ⋅2 см с ориентацией (100) по технологии, представленной на фиг. 3. При этом в качестве изотопного источника может быть выбран 63Ni, имеющий большой период времени полураспада (100 лет) и испускающий электронное излучение со средней энергией 17 кэВ и с максимальной энергией 64 кэВ, а также практически безопасный для здоровья человека. Такая энергия электронов меньше энергии дефектообразования в кремнии (160 кэВ). При этом глубина поглощения в кремнии электронов со средней энергией 17 кэВ составляет примерно 3.0 мкм, а для 90% поглощения бета-частиц от изотопного источника 63Ni - 12 мкм. Данные размеры должны соответствовать глубинам залегания p-n-переходов и величине ОПЗ, что достигается на типовых кремниевых структурах. Следует отметить, что в качестве радиоактивного изотопа могут быть использованы иные материалы, например, тритий и т д.
Принцип действия преобразователя (фиг. 4) основан на ионизации оптическим (световым) и бета (электронным) излучением материала полупроводника, например, кремния. Образующиеся при этом электронно-дырочные пары разделяются полем p-n-перехода в области пространственного заряда (ОПЗ) и создают разность потенциалов на p+ и n+ областях преобразователя (фотогальваническую э.д.с.). При этом часть электронно-дырочных пар может быть собрана полем p-n-перехода также в квазинейтральной области (КНО) на расстоянии, равном диффузионной длине пробега.
Техническими преимуществами изобретения являются:
- простая, дешевая и стандартная “микроэлектронная” технология его изготовления, не требующая резки и шлифовки чипов;
- высокий коэффициент отношения площади принимающих излучение p-n-переходов к объему кремниевого материала, в котором они расположены, что позволяет получать максимальную мощность излучения и соответственно э.д.с. на единицу объема преобразователя.
Следует отметить, что совмещение в единой функционально-интегрированной «гибридной» конструкции преобразователя солнечного и радиационного излучения дает в ряде применений таким источникам э.д.с. важные преимущества, а именно:
- возможность обеспечить зарядку аккумулятора при отсутствии солнечного света при минимальном ее весе, что важно, например, для применения в солнечных батареях беспилотных летательных аппаратах, взрывоопасных помещениях - шахтах, ночных индикаторах, расположенных в труднодоступных местах и т.д.
- возможность дополнительного существенного повышения КПД на несколько процентов преобразователя энергии по сравнению с эквивалентной по площади обычной кремниевой солнечной батареей;
- теоретически срок службы такого преобразователя определяется периодом полураспада радиационного материала, который для 63Ni составляет 100 лет, что более чем достаточно в большинстве применений.
название | год | авторы | номер документа |
---|---|---|---|
Высоковольтный преобразователь ионизирующих излучений и способ его изготовления | 2015 |
|
RU2608313C2 |
ПЛАНАРНЫЙ ВЫСОКОВОЛЬТНЫЙ ФОТО- И БЕТАВОЛЬТАИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2015 |
|
RU2605783C1 |
ПЛАНАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2015 |
|
RU2599274C1 |
КОМБИНИРОВАННЫЙ НАКОПИТЕЛЬНЫЙ ЭЛЕМЕНТ ФОТО- И БЕТАВОЛЬТАИКИ НА МИКРОКАНАЛЬНОМ КРЕМНИИ | 2015 |
|
RU2605784C1 |
Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления | 2017 |
|
RU2659618C1 |
Компактный бетавольтаический источник тока длительного пользования с бета-эмиттером на базе радиоизотопа Ni и способ его получения | 2016 |
|
RU2641100C1 |
МНОГОПЕРЕХОДНЫЙ КРЕМНИЕВЫЙ МОНОКРИСТАЛЛИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ОПТИЧЕСКИХ И РАДИАЦИОННЫХ ИЗЛУЧЕНИЙ | 2013 |
|
RU2539109C1 |
ИСТОЧНИК ЭЛЕКТРИЧЕСКОГО ПИТАНИЯ | 2015 |
|
RU2605758C1 |
АВТОНОМНЫЙ БЕТА-ВОЛЬТАИЧЕСКИЙ ИСТОЧНИК ПИТАНИЯ | 2019 |
|
RU2731547C1 |
КВАНТОВО-РАДИОИЗОТОПНЫЙ ГЕНЕРАТОР ПОДВИЖНЫХ НОСИТЕЛЕЙ ЗАРЯДА И ФОТОНОВ В КРИСТАЛЛИЧЕСКОЙ РЕШЕТКЕ ПОЛУПРОВОДНИКА | 2015 |
|
RU2654829C2 |
Настоящее изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию и может быть использовано во взрывоопасных помещениях - шахтах, в беспилотных летательных аппаратах, ночных индикаторах, сенсорах, расположенных в труднодоступных местах, и т.д. Предложена оригинальная «щелевая» конструкция преобразователя оптических и радиационных излучений, содержащая в полупроводниковой пластине n(p) типа проводимости вертикальные щели или каналы, на поверхности которых расположены вертикальные p-n-переходы, которые заполнены материалом радиоактивного изотопа, при этом на поверхности горизонтальных p-n-переходов пластины расположен диэлектрический слой, прозрачный для излучения оптического диапазона. Также предложен способ изготовления предложенной конструкции преобразователя оптических и радиационных излучений. Изобретение обеспечивает возможность расширения области применения преобразователя на оптический диапазон излучений, повышения его эффективности, т.е. позволяет получить максимальную электрическую мощность на единицу объема и веса преобразователя, и упрощения технологии изготовления. 2 н.п. ф-лы, 4 ил.
1. Конструкция преобразователя оптических и радиационных излучений, содержащая в полупроводниковой пластине n(p) типа проводимости вертикальные щели или каналы, на поверхности которых расположены вертикальные p-n-переходы, которые заполнены материалом радиоактивного изотопа, отличающаяся тем, что на поверхности горизонтальных p-n-переходов пластины расположен диэлектрический слой, прозрачный для излучения оптического диапазона.
2. Способ изготовления конструкции преобразователя оптических и радиационных излучений по п. 1, включающий формирование в объеме пластины n(p) типа проводимости щелей или каналов, диффузионное легирование поверхности каналов примесью p(n) типа, осаждение на поверхность пластины и в каналы материала радиоактивного изотопа, отличающийся тем, что сначала проводится формирование на поверхности пластин n(p) типа p(n) типа горизонтальных p-n-переходов, затем проводится осаждение диэлектрического слоя прозрачного для излучения оптического диапазона, затем формирование в объеме пластины глубоких щелей путем селективного травления полупроводникового материала к диэлектрику, затем проводится диффузионное легирование поверхности каналов примесью p(n) типа, осаждение на поверхность пластины и в каналы материала радиоактивного изотопа и, наконец, удаление материала изотопа с поверхности диэлектрического слоя.
US7939986B2, 09.05.2011 | |||
US2004154656A1, 12.08.2004 | |||
US6774531B1, 10.08.2004 | |||
US5396141A, 07.03.1995 | |||
МНОГОПЕРЕХОДНЫЙ КРЕМНИЕВЫЙ МОНОКРИСТАЛЛИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ОПТИЧЕСКИХ И РАДИАЦИОННЫХ ИЗЛУЧЕНИЙ | 2013 |
|
RU2539109C1 |
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ БЕТА-ИЗЛУЧЕНИЯ В ЭЛЕКТРОЭНЕРГИЮ | 2010 |
|
RU2452060C2 |
RU2011105050А, 20.08.2012. |
Авторы
Даты
2017-01-17—Публикация
2015-05-14—Подача