КОМПЛЕКСНЫЙ СПОСОБ ПРЕДВАРИТЕЛЬНОЙ ДЕГАЗАЦИИ РАБОЧЕГО УГОЛЬНОГО ПЛАСТА, ВЫРАБОТАННОГО ПРОСТРАНСТВА И ПЛАСТОВ-СПУТНИКОВ И УПРАВЛЯЕМОГО ОБРУШЕНИЯ ТЯЖЕЛОЙ КРОВЛИ Российский патент 2015 года по МПК E21F7/00 

Описание патента на изобретение RU2540750C2

Изобретение относится к горной промышленности, а именно к подземной , и предназначено для комплексной дегазации рабочих угольных пластов, выработанного пространства и пластов-спутников из подземных выработок через скважины общего назначения; а также для управления труднообрушаемой кровлей с примением ударо-, выбрособезопасных охранных жестко-податливых целиков.

Известен способ дегазации угольных пластов через вертикальные скважины, пробуренные с поверхности, с горизонтальными окончаниями [1], который обеспечивает снижение газоносности менее 8 м3/т и гарантирует «абсолютную» безопасность ведения горных работ от взрывов метана и выбросов угля и газа. Метод был признан нецелесообразным ввиду высокой стоимости и на российских шахтах не нашел применения, однако широко применяется на американских глубоких газоносных угольных месторождениях, в частности San-Juan и Black Worrier.

Известен также вариант защиты от радоновыделений угольного пласта при его подземной добыче, заключающийся в бурении веера скважин в боковые породы из полевого подготовительного штрека и участковых квершлагов до подхода лавы [2]. Но подобное бурение веера скважин из пластовых выработок может найти применение и для извлечения метана, поэтому данный способ послужил прототипом предлагаемому изобретению.

Существующие методы дегазации угольных пластов предусматривают удаление метана из угля. Однако удаление газа только из пласта не позволяет снизить метаносодержание, так как за счет его миграции по трещинам из кровли, почвы, выработанного пространства и пластов-спутников он интенсифицируется и восстанавливается.

Известен способ управления труднообрушаемой кровлей, включающий создание максимального пролета основной кровли посредством образования щелей в целиках около конвейерного штрека с помощью буровзрывных работ [3], рассматриваемый нами в качестве аналога предлагаемого способа. Несомненно, этот способ имеет ряд достоинств. Но при отработке газоносных угольных пластов можно предложить более эффективный вариант управления кровлей с учетом повышенной осторожности при проведении взрывных работ, осуществляемый вслед за дегазацией. К тому же предлагаемый нами способ позволяет предотвратить явления, сопровождающие удар кровли, такие как: воздушная волна, сейсмические колебания, выделения метана, - за счет уменьшения динамического воздействия.

Цель изобретения - обеспечение безопасности по факторам газовому и управления горным давлением, за счет чего достигается увеличение скорости подвигания подготовительных выработок и нагрузки на очистной забой, при комплексном воздействии из общих подземных выработок и скважин.

В отечественной практике распространена двухштрековая/бремсберговая схема подготовки столбов. Но высокие темпы производства требуют повышения безопасности, поэтому все больше возрастает внимание к проведению многоштрековых выработок [4]. Основу для предлагаемого нами комплекса мер составляет трехштрековая/бремсберговая схема подготовки столбов по простиранию. К тому же такая схема позволяет осуществлять дополнительные технологические операции, не мешая основным. Способ реализуем посредством бурения из дегазационно-торпедных выработок 1, расположенных по центру, серии общих для дегазации и заряжания скважин 2, 3, 4 в кровлю и почву пласта, по пластам-спутникам 5, 6; скважин 7 - по рабочему пласту 8; а также бурение полевых длинных скважин 9 при помощи лафетного оборудования из передовой пластовой выработки 10 для дегазации выработанного пространства и места положения пластовых подготовительных выработок. Уменьшению риска при локальном отказе торпедирования [5] способствует создание охранных и погашаемых очистным комплексом ударо-, выбрособезопасных жестко-податливых целиков 11 и 12 (фиг.1, 2, 3, 4, 5). Наличие центральных выработок 1 не препятствует работам, проводимым в транспортном 13 и вентиляционном 14 штреках/бремсбергах. Скважины подготавливают заранее до подхода очистных работ (фиг.1). В действующей лаве дегазацию направляют в штрек/бремсберг 1 из почвы, кровли, пластов-спутников, выработанного пространства и рабочего пласта; из скважин 9 в выработку 10, а в подготавливаемой лаве - только из рабочего пласта (фиг.5). Полевые скважины располагают на одной линии, проходящей между пластовыми скважинами (фиг.3). Метан удаляют по системе газопровода.

Для обрушения консолей кровли и уменьшения риска при локальном отказе торпедирования в направлении, параллельном лаве (продольное расщепление), на стадии подготовительных работ создают охранную систему с жесткими 11 и податливыми 12 целиками (фиг.5). Податливые целики служат для защиты функциональных (вентиляционная, транспортная) выработок, а жесткие расположены со стороны посадки консоли (фиг.2). Отличительной особенностью геоконструкции является жесткое поддержание присечной выработки со стороны выработанного пространства, обеспечивающее плавную посадку кровли 15 под действием собственного веса (фиг.6). Податливые целики предохраняют вспомогательные штреки/бремсберги 16 от опорного давления со стороны лавы 17 (фиг.5 (а, б), 6). Размеры и обработка целиков должна соответствовать правилам ударо-, выбросо-, пожаробезопасности.

В предлагаемом способе торпедирование кровли осуществляют по двум схемам. По первой схеме обрушение продольных блоков 18 [линия обрушения 19 параллельна лаве (фиг.1)] от опережающего перед лавой передового торпедирования кровли (линия зарядов ВВ параллельна лаве - сечение Б-Б) происходит за счет создания трещин 20 (фиг.3) и последующего их развития в зоне изгиба кровли от растягивающих напряжений. Обрушение кровли - за крепью мехкомплекса в сторону завала (фиг.3). Трещина 20, образующаяся при взрыве удлиненного заряда взрывчатого вещества в скважинах 2, стремится в сторону скважин 3 и 4, в которые предварительно закачивают поверхностно-активные вещества (ПАВ), способствующие дальнейшему ее развитию. Расстояние от устья скважины до верхней границы заряда определяют по нормативам с учетом физических свойств горных пород и бризантности взрывчатки. Снижением плеча консоли достигают меньший динамический эффект от обрушения, то есть снижается вероятность возникновения искры, которая может повлечь взрыв метана.

По второй схеме обрушение поперечных блоков 21 [линия обрушения 22 перпендикулярна лаве (фиг.1, 4, 5)] производят за лавой с помощью отстающего торпедирования кровли (линия зарядов ВВ перпендикулярна лаве) с созданием трещин 23 по линии зарядов ВВ, содержащихся в скважинах 24, 25, 26 (фиг.4). Таким образом, обрушение блока 21 происходит с отставанием от лавы только в районе транспортного штрека/бремсберга в завале, в отличие от вентиляционных выработок, которые вместе с целиками погашает механизированный комплекс (фиг.1, 2). Центральную же оставляют открытой для удаления метана над и под выработанным пространством с целью продолжения газоотсоса из отработанного пространства и после прохождения лавы на расстояние, равное критическому размеру длины консоли 18 тяжелой кровли (фиг.5).

Дегазацию выработанного пространства в предлагаемом способе осуществляют до обрушения в верхней его части через сохранившиеся на половину лавы скважины 27. При интенсивном поступлении газа центральный штрек/бремсберг можно использовать в качестве «газосборного» с применением полевых скважин 9, проводимых заблаговременно по трассе 3-х штреков/бремсбергов для их защиты от газа по длине выемочного столба (фиг.1, 5).

В завальной части столба образуется две линии обрушения (фиг.5). Первая 19 - от передового торпедирования перед лавой и обрушения за комплексом. Вторая 22 - в результате отстающего торпедирования ряда зарядов ВВ. Однако за счет депрессии метан из выработанного пространства имеет возможность поступать к сохранившимся скважинам 27, попадающим в зоны еще необрушенных кровель.

Трехштрековая/бремсберговая схема подготовки за счет заблаговремнной дегазации и применения «интеллигентного» оборудования фирмы Caterpillar (комбайн Continuous Miner, установка анкерного крепления, система непрерывной транспортировки при слабой/твердой почве, ускоренный монтаж/демонтаж забойного оборудования с повышенной несущей способностью лавной крепи, с дизельным транспортом для перевозки секций крепи) сопутствует быстрому продвижению подготовительных выработок большей длины и очистных забоев длиной 500 м с обеспечением высокой нагрузки на очистной комплекс при «интеллектуальной» системе отработки столбами длиной до 6 км.

Отличительным признаком предлагаемого способа является комплексность мероприятий, включающая газоотсос из рабочего пласта, пластов-спутников и выработанного пространства; инициированное обрушение взрывом части консоли через скважины дегазации; управляемое продольное и поперечное расщепление нависающих пород с регулированием длины плеча обрушаемой консоли; создание ослабляющих щелей на границах консоли; применение торпед и ПАВ при взрывании; создание системы ударо-, выбросо-, пожаробезопасных охранных жестко-податливых погашаемых целиков.

При увеличении безопасности по газовому фактору (взрыв метана, выброс угля и газа) достигаем безопасность и по фактору горного давления, действующего со стороны нависшей консоли (отсутствие зоны повышенного горного давления в верхней части лавы). Увеличивается безопасность ведения работ в массиве, включающем угольные пласты, склонные к газодинамической активности и удароопасности, почва и кровля которых проявляют динамическую активность и могут быть также подвержены пучению. Указанные достоинства позволяют увеличить нагрузку на лаву в несколько раз.

На фиг.1 - схема развития работ по бурению дегазационных скважин (сечение А-А); на фиг.2 представлена схема бурения дегазационных скважин, заложение зарядов ВВ и образование ослабляющих щелей (сечение Б-Б); на фиг.3 - направление развития трещины, обрушение консолей (сечение В-В) и скважины дегазации выработанного пространства и рабочего пласта; на фиг.4 - механизм обрушения кровли в завале (сечение Д-Д); на фиг.5 - создание системы жестко-податливых целиков в плане: а) выемочный столб с трехштрековой/бремсберговой системой подготовки, б) подготовительные забои с формированием двух целиков и бурением длинных скважин в кровлю, почву и по пласту; на фиг.6 - обрушение нависающей консоли на жесткий целик (сечение Г-Г).

Примером осуществления описанного способа может служить отработка пологих пластов мульды Воркутского угольного месторождения, где дегазацию производят путем вентиляции за счет разбавления метана свежей струей воздуха, а также применяя систему дегазационных трубопроводов. Физические свойства следующие: плотность угля - 1,22 т/м3, предел прочности на сжатие - 14 МПа; плотность песчаника - 2,7 т/м3, предел прочности на сжатие - 114 МПа (крепость f=11). Природная метаноносность пласта - 25 м3/т. Применение предлагаемого способа позволит максимально снизить содержание метана и горное давление, создаваемое нависающей консолью, тем самым повысить безопасность работ. В рассматриваемых условиях длина торпеды заряда ВВ должна составлять 1/10 длины скважины.

Источники информации

1. Патент US 4978172 (A), 18.12.1990.

2. Патент RU 2116444 C1, 27.07.1998.

3. Патент RU 2151293 C1, 20.06.2000 (аналог).

4. Казанин О.И. Обоснование схем многоштрековой подготовки выемочных участков газоносных угольных пластов на больших глубинах: дис. на соискание уч. степени докт. техн. наук. - СПб., 2009. - 271 с.

5. Катков Г.А., Остапенко В.Н., Журило А.А. (ИГД им. А.А. Скочинского). Управление труднообрушаемыми кровлями методом передового торпедирования: Обзор / ЦНИИЭИуголь. - М., 1982, с.6.

Похожие патенты RU2540750C2

название год авторы номер документа
СПОСОБ ДЕГАЗАЦИИ УГЛЕНОСНОЙ ТОЛЩИ 2012
  • Ковалев Олег Владимирович
  • Мозер Сергей Петрович
  • Тхориков Игорь Юрьевич
  • Лейсле Артем Валерьевич
  • Руденко Геннадий Викторович
RU2487246C1
СПОСОБ ДЕГАЗАЦИИ УГЛЕНОСНОЙ ТОЛЩИ 2008
  • Толстунов Сергей Андреевич
  • Мозер Сергей Петрович
RU2382882C1
СПОСОБ ПРЕДВАРИТЕЛЬНОЙ ДЕГАЗАЦИИ СВИТЫ УГОЛЬНЫХ ПЛАСТОВ И ВЫРАБОТАННОГО ПРОСТРАНСТВА 2014
  • Кузяев Лев Сергеевич
  • Пугач Александр Сергеевич
RU2571464C1
СПОСОБ ИНТЕНСИВНОЙ ОТРАБОТКИ ПОЛОГИХ УГОЛЬНЫХ ПЛАСТОВ МЕХАНИЗИРОВАННЫМИ КОМПЛЕКСАМИ БЕЗ ПРЕДВАРИТЕЛЬНОЙ ПРОХОДКИ ПОДГОТОВИТЕЛЬНЫХ ВЫРАБОТОК 2010
  • Розенбаум Марк Абрамович
  • Громов Юрий Викторович
  • Шабаров Аркадий Николаевич
  • Власенко Дмитрий Сергеевич
  • Баскаков Владимир Петрович
RU2444624C1
СПОСОБ РАЗРАБОТКИ МОЩНЫХ ПОЛОГИХ УГОЛЬНЫХ ПЛАСТОВ 2014
  • Сенкус Витаутас Валентинович
  • Стефанюк Богдан Михайлович
  • Сенкус Василий Витаутасович
  • Сенкус Валентин Витаутасович
  • Мельник Владимир Васильевич
  • Логинова Елена Викторовна
  • Черкашина Евгения Петровна
  • Горбуль Юлия Александровна
  • Бондарь Ольга Андреевна
  • Фирсова Светлана Львовна
  • Школяренко Евгений Александрович
  • Гизатулин Ринат Акрамович
  • Фомичев Сергей Григорьевич
  • Лаврентьев Виктор Николаевич
  • Конакова Нина Ивановна
  • Ермаков Анатолий Юрьевич
RU2563003C1
СПОСОБ УПРАВЛЕНИЯ ГАЗОВЫДЕЛЕНИЕМ ПРИ ОТРАБОТКЕ СКЛОННОГО К САМОВОЗГОРАНИЮ УГОЛЬНОГО ПЛАСТА 2012
  • Забурдяев Виктор Семенович
RU2512049C2
СПОСОБ ДЕГАЗАЦИИ УГОЛЬНОГО ПЛАСТА 2011
  • Ордин Александр Александрович
  • Леконцев Юрий Михайлович
  • Сажин Павел Васильевич
  • Никольский Александр Михайлович
  • Опрук Глеб Юрьевич
  • Кнышенко Александр Николаевич
  • Метельков Алексей Александрович
RU2472939C1
СПОСОБ ДЕГАЗАЦИИ НАДРАБАТЫВАЕМЫХ ПЛАСТОВ-СПУТНИКОВ 2020
  • Казанин Олег Иванович
  • Сидоренко Андрей Александрович
  • Ярошенко Валерий Валерьевич
RU2749707C1
СПОСОБ ДЕГАЗАЦИИ ОТРАБАТЫВАЕМОГО УГОЛЬНОГО ПЛАСТА 2008
  • Полевщиков Геннадий Яковлевич
  • Козырева Елена Николаевна
  • Шинкевич Максим Валериевич
RU2392442C1
Способ гидравлической закладки выработанного пространства при разработке пологих угольных пластов 1990
  • Болгожин Шабдан Абдул-Гапарович
  • Клиновицкий Федор Иосифович
  • Молдабеков Марат Зинадилович
  • Сейдахметов Едыге
SU1763661A1

Иллюстрации к изобретению RU 2 540 750 C2

Реферат патента 2015 года КОМПЛЕКСНЫЙ СПОСОБ ПРЕДВАРИТЕЛЬНОЙ ДЕГАЗАЦИИ РАБОЧЕГО УГОЛЬНОГО ПЛАСТА, ВЫРАБОТАННОГО ПРОСТРАНСТВА И ПЛАСТОВ-СПУТНИКОВ И УПРАВЛЯЕМОГО ОБРУШЕНИЯ ТЯЖЕЛОЙ КРОВЛИ

Изобретение относится к горной промышленности, а именно к подземной угледобыче. Техническим результатом является повышение безопасности работы в очистном забое в пластах, опасных по газовому фактору. Предложен комплексный способ предварительной дегазации рабочего угольного пласта, выработанного пространства и пластов-спутников и управляемого обрушения тяжёлой кровли, включающий проведение полевых подготовительных выработок - штреков и бремсбергов, затем из дегазационно-торпедных пластовых выработок бурят веера скважин в почву и кровлю пласта, а из передовой пластовой выработки бурят длинные скважины, которые направляют в сторону выработанного пространства, после чего осуществляют передовое торпедирование для создания трещин и производят плавную посадку кровли. При этом комплексность мероприятий включает расположение веерных скважин, общих как для дегазации, так и для торпедирования, а при проведении полевых подготовительных штреков образуют охранные жёстко-податливые целики. Причем скважины, пробуренные в кровле пласта, являются дегазационно-торпедными и их располагают в таком порядке, при котором обеспечивают посредством передового торпедирования образование трещин для продольного обрушения по линии, проходящей параллельно лаве. Помимо передового торпедирования осуществляют отстающее, посредством которого производят поперечное обрушение блоков по линии, перпендикулярной лаве. А дегазацию выработанного пространства до обрушения в его верхней части осуществляют через сохранившиеся наполовину лавы скважины. 6 ил.

Формула изобретения RU 2 540 750 C2

Комплексный способ предварительной дегазации рабочего угольного пласта, выработанного пространства и пластов-спутников и управляемого обрушения тяжёлой кровли, включающий проведение полевых подготовительных выработок - штреков и бремсбергов, затем из дегазационно-торпедных пластовых выработок бурят веера скважин в почву и кровлю пласта, а из передовой пластовой выработки бурят длинные скважины, которые направляют в сторону выработанного пространства, после чего осуществляют передовое торпедирование для создания трещин и производят плавную посадку кровли, отличающийся тем, что комплексность мероприятий включает расположение веерных скважин, общих как для дегазации, так и для торпедирования, проведение полевых подготовительных штреков, при котором образуют охранные жёстко-податливые целики, что позволяет обеспечить направленное обрушение консоли и тем самым компенсировать риск при отказе торпедирования, а также сохранить неразрушенными выработки со стороны новой лавы, при этом скважины, пробуренные в кровле пласта, являются дегазационно-торпедными и их располагают в таком порядке, при котором обеспечивают посредством передового торпедирования образование трещин для продольного обрушения по линии, проходящей параллельно лаве, помимо передового торпедирования осуществляют отстающее, посредством которого производят поперечное обрушение блоков по линии, перпендикулярной лаве, при этом дегазацию выработанного пространства до обрушения в его верхней части осуществляют через сохранившиеся наполовину лавы скважины.

Документы, цитированные в отчете о поиске Патент 2015 года RU2540750C2

Способ комплексной дегазациишАХТНыХ пОлЕй 1976
  • Сергеев Иван Владимирович
  • Забурдяев Виктор Семенович
SU796464A1
Способ управления труднообрушаемой кровлей при слоевой разработке пологих пластов 1988
  • Ковалев Олег Владимирович
  • Денкевич Тадеуш Евгеньевич
  • Хавротин Георгий Павлович
  • Горшков Алексей Валентинович
  • Баранов Николай Григорьевич
  • Волков Борис Алексеевич
  • Калиниченко Петр Иванович
SU1553679A1
СПОСОБ ДЕГАЗАЦИИ ШАХТНОГО ПОЛЯ 2010
  • Осипов Анатолий Николаевич
  • Гусельников Лев Митрофанович
  • Курка Сергей Николаевич
RU2445462C1
Способ дегазации выработанного пространства 1987
  • Айруни Арсен Тигранович
  • Ставровский Виктор Андреевич
  • Швец Игорь Александрович
  • Бубликов Юрий Лазаревич
  • Сергеев Максим Валериевич
SU1472701A1
Способ борьбы с газодинамическими явлениями при разработке угольных пластов 1989
  • Зуев Владимир Александрович
  • Коршунов Геннадий Иванович
  • Спиридонов Юрий Васильевич
  • Гусельников Лев Митрофанович
  • Лях Виталий Григорьевич
SU1652614A1
СПОСОБ ДЕГАЗАЦИИ НАДРАБАТЫВАЕМОГО ПЛАСТА-СПУТНИКА 1995
  • Гусельников Л.М.
  • Зуев В.А.
  • Осипов А.Н.
  • Белозеров В.А.
  • Жуков Н.С.
  • Лосев Н.С.
RU2086773C1
Аэрофильтр 1928
  • Гартман Е.И.
SU16196A1
US 4978172 A1, 18.12.1990
Казанин О.И., Обоснование схем многоштрековой подготовки выемочных участков газоносных угольных пластов на больших глубинах// автореферат, Санкт-Петербург, 2009, с.18 строки 9-24, рис.7

RU 2 540 750 C2

Авторы

Кузяев Лев Сергеевич

Пугач Александр Сергеевич

Даты

2015-02-10Публикация

2013-03-15Подача