ТЕЛЕМЕХАНИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ И УПРАВЛЕНИЯ УСТАНОВКАМИ КАТОДНОЙ ЗАЩИТЫ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ Российский патент 2015 года по МПК G05B19/00 C23F13/02 

Описание патента на изобретение RU2540847C2

Изобретение относится к области телемеханики и автоматизированных систем измерения, контроля, регулирования, диагностики и управления удаленными объектами, а именно к системам коррозионного мониторинга объектов электрохимической защиты магистральных газопроводов, в частности установок катодной защиты.

Установки катодной защиты (УКЗ) обеспечивают электрохимическую защиту трубопроводов от коррозии металла и увеличивают срок их эксплуатации. Установки катодной защиты состоят из одной или нескольких станций катодной защиты (СКЗ) (в зависимости от количества ниток трубопроводов), глубинных анодных заземлителей, датчиков измерения защитных потенциалов трубопроводов и датчиков скорости коррозии. Выходные сигналы последних измеряются на контрольных измерительных пунктах (КИП).

Катодная защита металлических трубопроводов осуществляется таким образом, чтобы на них было постоянное значение защитного потенциала, обеспечиваемое станциями катодной защиты (СКЗ), не зависимо от изменения электропроводных свойств грунта и протекающих в нем токов.

Одна установка катодной защиты (УКЗ) обеспечивает ограниченную длину защитной зоны трубопровода. Для защиты всего трубопровода УКЗ устанавливаются с определенным шагом на всем его протяжении.

Для сбора информации со всех установок катодной защиты и управления их техническими средствами используются различные дистанционные автоматизированные системы коррозионного мониторинга, в которых в качестве каналов связи в настоящее время применяются следующие:

- проводная телефонная линия;

- радиоканал УКВ-диапазона;

- радиорелейные линии;

- мобильная сотовая связь стандарта GSM;

- спутниковые каналы связи;

- волоконно-оптические линии связи.

Более 70% территории РФ относится к холодной зоне, природно-климатические условия которой оказывают решающее влияние на безотказную работу средств электрохимической защиты. Поэтому в последнее время огромное значение уделяется не только вопросам надежности станций катодной защиты (СКЗ), но и вопросам непрерывного контроля за работой технических средств установок катодной защиты (УКЗ) для обеспечения необходимого и своевременного обслуживания и профилактического ремонта, а также вопросам телеметрии параметров УКЗ с возможностью удаленной корректировки ее работы для обеспечения эффективной защиты трубопроводов.

Известна телемеханическая система контроля и управления станциями катодной защиты (патент RU 101545 U1 G05B 19/00, опубл. 20.01.2011), содержащая станции катодной защиты, контроллеры телеуправления с интегрированными модемами GSM GPRS, каналы периферийной связи, антенно-фидерные устройства контроллеров телеуправления, GSM GPRS-каналы приемопередачи данных, антенно-фидерные устройства мобильного оператора, GSM GPRS-сервер мобильного оператора связи, автоматизированные рабочие места. В ее состав также входит выделенный единый сервер телемеханики, INTERNET канал связи, обеспечивающий обмен данными между GSM GPRS сервером мобильного оператора связи и сервером телемеханики, каналы связи INTRANET/INTERNET, обеспечивающие обмен данными между сервером телемеханики и автоматизированными рабочими местами, комплекс серверных программных средств, состоящий из подпрограммы приемопередачи данных и подпрограммы визуализации, обработки и хранения данных. Сервер телемеханики принимает данные от контроллеров телеуправления станций катодной защиты, обрабатывает и передаст их на автоматизированные рабочие места непосредственно без промежуточных серверов регистрации, коммутации и коммуникации. Контроллеры телеуправления используют канал связи GSM GPRS и программный протокол TCP/IP. Подпрограмма приемопередачи данных функционально выполнена в виде службы, запускаемой операционной системой сервера телемеханики. Подпрограмма визуализации, обработки и хранения данных реализована средствами WEB-программирования. Комплекс серверных программных средств установлен на едином сервере телемеханики и в полном объеме реализует функции SCADA. Каналы периферийной связи, обеспечивающие передачу данных с объекта контроля и управления в контроллер телеуправления, представляют собой линии интерфейсов RS-232, RS-485. Комплекс серверных программных средств при использовании программно-аппаратных средств сервера телемеханики и сети INTERNET обеспечивает неограниченное количество точек регламентируемого доступа к информации по станциям катодной защиты на основе классификации по именам пользователей (login) и паролям (password) и тем самым реализует функции защиты информации и разграничения прав пользователей.

Недостатки известной телемеханической системы контроля и управления станциями катодной защиты заключаются в следующем:

- система предполагает использование каналов связи GSM GPRS с комплексом аппаратуры GSM GPRS, включающим модемы GSM GPRS и антенно-фидерные устройства. Данное оборудование и его установка являются дорогостоящими;

- организация передачи информации по радиоканалу, который используется данной системой в качестве канала связи, в условиях пересеченного рельефа невозможна из-за ограниченной зоны действия радиоаппаратуры;

- отсутствует контроль значения тока каждого анодного заземлителя, характеризующего состояние его работоспособности. Отсутствие информации об изменении во времени тока каждого анодного заземлителя не позволяет оценить скорость растворения его электродов и своевременно осуществить необходимый ремонт;

- отсутствует контроль тока в каждой точке дренажа (точке подключения к трубопроводу), характеризующий состояние изоляции токоподводящего провода и состояние контактного узла точки дренажа. Отсутствие контроля тока в точке дренажа снижает эффективность управления процессом электрохимической защиты трубопровода.

Наиболее близким аналогом заявляемой полезной модели является известная подсистема коррозионного мониторинга (ПКМ) «СКАТ» (http://forum.sferamk.runwww.forum.sferamk.ru/index.php/ru/pkm-skat; http://www.signalrp.ru/catalog/skat-s/). Подсистема коррозионного мониторинга (ПКМ) «СКАТ» представляет собой систему распределенного типа, включающую в свой состав: автоматизированное рабочее место (АРМ) диспетчера, установки катодной защиты со станциями катодной защиты (СКЗ), оснащенными средствами дистанционного контроля и управления и контрольно-измерительными пунктами (КИП), объединенные каналами связи.

В стойку КИП установлены устройства дистанционного контроля (УДК КИП), которые обеспечивают измерение и передачу по каналу связи защитного и поляризационного потенциалов, также состояние пластин-индикаторов датчика коррозии.

Информационный обмен сигналами станций катодной защиты (СКЗ) с автоматизированным рабочим местом оператора (АРМ) может осуществляться:

- по каналам мобильной связи GSM (SMS/CSD/GPRS);

- по УКВ-радиоканалу;

- по локальной вычислительной сети Ethernet;

- по физической двухпроводной линии через интерфейс RS-485.

Информационный обмен сигналами УДК КИП с АРМ диспетчера может осуществляться по каналам мобильной связи GSM (SMS/CSD/GPRS) или по физической двухпроводной линии через интерфейс RS-485.

Подсистема коррозионного мониторинга (ПКМ) «СКЛТ» обеспечивает сбор, хранение и отображение на мониторе АРМ оператора, следующих основных параметров установки катодной защиты (УКЗ):

- суммарный потенциал;

- поляризационный потенциал;

- состояние индикаторов датчика скорости коррозии;

- выходное напряжение станций катодной защиты (СКЗ);

- выходной ток СКЗ;

- напряжение питания и потребляемый ток УКЗ.

- состояние датчика вскрытия устройства;

- обрыв электрода сравнения;

ПКМ «СКЛТ» обеспечивает следующие функции управления:

- установку значения тока СКЗ;

- установку значения защитного потенциала;

- установку режимов работы СКЗ.

Недостатки известной подсистемы коррозионного мониторинга (ПКМ) «СКЛТ» заключаются в следующем:

- данная система подразумевает использование беспроводных (радиоканальных) средств связи. При этом на качество связи значительно влияет рельеф местности и метеоусловия, что снижает эксплуатационную надежность системы;

- отсутствует контроль значения тока каждого анодного заземлителя, характеризующего состояние его работоспособности (износа). Отсутствие информации об изменении во времени тока каждого анодного заземлителя не позволяет оценить скорость растворения его электродов и своевременно осуществить необходимый ремонт, что снижает работоспособность системы;

- отсутствует контроль тока в каждой точке дренажа (точке подключения к трубопроводу), характеризующий состояние изоляции токоподводящего провода и состояние контактного узла точки дренажа. Отсутствие контроля тока в точке дренажа снижает эффективность управления процессом электрохимической защиты трубопровода, что также отрицательно сказывается на ее работоспособности и надежности.

Технической задачей предлагаемого изобретения является создание телемеханической системы контроля и управления установками катодной защиты магистральных газопроводов, обеспечивающей падежную связь в условиях любого рельефа местности и расширение функциональных возможностей контроля параметров каждой установки с прогнозированием отказов их компонентов.

Указанную техническую задачу предлагается решать с помощью высокочастотного канала связи, организованного подключением оборудования диспетчерского пункта и установок катодной защиты к воздушной линии электропередач, и с помощью измерительных преобразователей, подключенных к каждому анодному заземлителю и к каждой точке дренажа трубопровода.

Технический результат - повышение надежности работы установок катодной защиты магистральных газопроводов.

Для достижения технического результата в телемеханической системе контроля и управления установками катодной защиты магистральных газопроводов, содержащей установки катодной защиты со станциями катодной защиты, с блоками контроля и управления, трубопроводами, анодными заземлителями, контрольно-измерительными пунктами, датчиками потенциалов и датчиками скорости коррозии, диспетчерский пункт с автоматизированным рабочим местом диспетчера, канал связи между станциями катодной защиты и диспетчерским пунктом, согласно изобретению, канал связи организован посредством подключения к воздушной линии электропередач высокочастотных заградителей, конденсаторов связи, соединенных с фильтрами присоединения, имеющими заземляющие ножи и подключенными к блокам высокочастотной связи, один из которых установлен в диспетчерском пункте и связан с автоматизированным рабочим местом диспетчера, а другие - в установках катодной защиты и связаны с блоками контроля и управления, кроме того, к каждому анодному заземлителю и к каждой точке дренажа трубопровода подключен измерительный преобразователь, связанный с блоком контроля и управления.

Сущность изобретения и принцип ее работы поясняются схемами.

На фиг.1 представлена структурная схема телемеханической системы контроля и управления установками катодной защиты магистральных газопроводов; на фиг.2 - схема установки катодной защиты.

Телемеханическая система контроля и управления установками катодной защиты магистральных газопроводов (фиг.1) содержит диспетчерский пункт (ДП) и установки катодной защиты (УКЗ), соединенные между собой линейным высокочастотным трактом связи по воздушной линии электропередач (ЛЭП), состоящим из высокочастотных заградителей (ВЧЗ) и конденсаторов связи (КС) с соответствующими фильтрами присоединения (ФП).

Диспетчерский пункт (ДП) содержит автоматизированное рабочее место (АРМ) диспетчера, соединенное линией интерфейса RS-485 с блоком высокочастотной (ВЧ) связи, выход которого подключен к фильтру присоединения (ФП) линейного высокочастотного тракта связи но ЛЭП.

АРМ диспетчера содержит центральный вычислительный модуль (компьютер) с установленной в нем соответствующей программой, обеспечивающей автоматизированное управление каждой установкой катодной защиты (УКЗ), сбор технологической информации со всех контролируемых УКЗ, обработку, хранение и представление этой информации диспетчеру.

Каждая установка катодной защиты (УКЗ) (фиг.2) содержит трансформатор питания, подключенный к ЛЭП, станцию катодной защиты (СКЗ), подключенную к глубинным анодным заземлителям (АЗ) и трубопроводам, контрольно-измерительные пункты (КИП), на которые выведены выходные сигналы с датчиков скорости коррозии (ДСК) и датчиков потенциалов (ДП). Сигналы ДСК и ДП передаются в блок контроля и управления. При этом датчики потенциалов подключены к измерительным преобразователям, соединенным с блоком контроля и управления.

Блок контроля и управления соединен линией интерфейса RS-485 с блоком высокочастотной (ВЧ) связи, выход которого подключен к фильтру присоединения (ФП) линейного высокочастотного тракта, с подключенным к нему заземляющим ножом (ЗН), и далее через конденсатор связи (КС) к фазе ЛЭП.

Для контроля тока к каждому глубинному анодному заземлителю (АЗ) подключен измерительный преобразователь (ИП), выход которого соединен с блоком контроля и управления.

Измерение значения тока каждого глубинного анодного заземлителя обеспечивает автоматический контроль его работоспособности и гарантирует качество технологического процесса электрохимической защиты трубопроводов, что необходимо при длительных сроках эксплуатации глубинного анодного заземлителя, когда происходит постепенное растворение электрода анодного заземлителя или нарушение изоляции токоподводящего провода.

Например, в случае обрыва цепи или разрушения анодного заземлителя величина анодного тока становится равной нулю, что приводит к выдаче блоком контроля и управления сигнала «Неисправность». Сигнал о неисправном анодном заземлителе через интерфейс RS-485 поступает в блок высокочастотной связи, а далее через фильтр присоединения (ФП) и конденсатор связи (КС) поступает в одну из фаз линии электропередач высокого напряжения. Эта информация по линии электропередач через конденсатор связи (КС) и фильтр присоединения (ФП), соединенные с блоком высокочастотной связи диспетчерского пункта (фиг.1), поступает на автоматизированное рабочее место (АРМ) диспетчера, после чего принимается решение об отправке бригады для устранения данной неисправности.

Для контроля тока в каждой точке дренажа (ТД) (точке подключения к трубопроводу) подключен измерительный преобразователь (ИП), выход которого соединен с блоком контроля и управления (фиг.2). Измерение тока в точке дренажа обеспечивает оперативную коррекцию его значения для поддержания необходимой величины защитного потенциала трубопровода и автоматический контроль технического состояния узла присоединения и изоляции токопроводящего провода.

Каналы связи, организованные посредством подключения к линиям электропередач, дешевле и надежнее каналов, созданных на основе радиоканалов, проводных и волоконно-оптических линий, так как не расходуются средства на сооружение и эксплуатацию собственно линий связи, а эксплуатационная надежность самой линии электропередач намного выше остальных каналов связи.

Измерение тока каждого глубинного анодного заземлителя измерительным преобразователем обеспечивает автоматический контроль его работоспособности, что необходимо при длительных сроках эксплуатации глубинного анодного заземлителя, когда происходит растворение его электрода или нарушение изоляции токоподводящего провода.

Измерение тока в каждой точке дренажа измерительным преобразователем обеспечивает оперативную коррекцию его значения для поддержания необходимой величины защитного потенциала трубопровода и автоматический контроль технического состояния узла присоединения или изоляции токопроводящего провода.

Таким образом, использование высокочастотного канала связи по воздушной линии электропередач и получение дополнительной информации о работе глубинных анодных заземлителей и узлов присоединения в точках дренажа даст возможность оперативно корректировать параметры техпроцесса электрохимической защиты трубопроводов и предупреждать отказы соответствующего оборудования, что обеспечивает повышение надежности работы установок катодной защиты магистральных газопроводов.

Похожие патенты RU2540847C2

название год авторы номер документа
Способ противокоррозионной защиты магистрального трубопровода в условиях города. 2020
  • Какалин Павел Павлович
  • Мартыненко Денис Сергеевич
  • Шашнов Денис Петрович
RU2749962C1
Система дистанционного контроля состояния подземных трубопроводов 2019
  • Востриков Алексей Евгеньевич
  • Исаев Андрей Викторович
RU2701706C1
СПОСОБ ТЕЛЕМЕХАНИЧЕСКОГО КОНТРОЛЯ И УПРАВЛЕНИЯ УДАЛЕННЫМИ ОБЪЕКТАМИ С ИСПОЛЬЗОВАНИЕМ КАНАЛА СВЯЗИ GSM GPRS, ЕДИНОГО СЕРВЕРА ТЕЛЕМЕХАНИКИ И ТЕЛЕМЕХАНИЧЕСКАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2010
  • Балаба Константин Валерьевич
  • Балахонцев Вячеслав Егорович
  • Еникеев Адель Камильевич
  • Юнусов Андрей Рифович
RU2455768C2
СПОСОБ НАХОЖДЕНИЯ КОЛИЧЕСТВА ДОПОЛНИТЕЛЬНЫХ АНОДНЫХ ЗАЗЕМЛИТЕЛЕЙ, НЕОБХОДИМЫХ ДЛЯ ОБЕСПЕЧЕНИЯ ЗАЩИТНОЙ РАЗНОСТИ ПОТЕНЦИАЛОВ "ТРУБА-ЗЕМЛЯ" НА УЧАСТКЕ ТРУБОПРОВОДА 2021
  • Никулин Сергей Александрович
  • Карнавский Евгений Львович
  • Репин Денис Геннадьевич
  • Савченков Сергей Викторович
  • Шеферов Александр Иванович
  • Воробьев Александр Николаевич
  • Лисенков Роман Викторович
RU2777824C1
УСТРОЙСТВО ДИСТАНЦИОННОГО КОНТРОЛЯ РАБОТОСПОСОБНОСТИ СТАНЦИЙ КАТОДНОЙ ЗАЩИТЫ 1991
  • Бойко С.И.
  • Александров А.А.
  • Петров Н.А.
  • Щелкунов Ю.Н.
RU2006953C1
СПОСОБ КОРРОЗИОННОГО КРОСС-МОНИТОРИНГА ПОДЗЕМНЫХ МЕТАЛЛИЧЕСКИХ СООРУЖЕНИЙ 1999
  • Львович В.А.
RU2159891C1
СТЕНД ИМИТАЦИИ РАБОТЫ СИСТЕМ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ И СПОСОБ ОБУЧЕНИЯ C ПРИМЕНЕНИЕМ СТЕНДА 2018
  • Цыпин Андрей Владимирович
RU2678882C1
УСТРОЙСТВО ДЛЯ КАТОДНОЙ ЗАЩИТЫ ПРОТЯЖЕННОГО УЧАСТКА ПОДЗЕМНОГО СООРУЖЕНИЯ 2012
  • Юдаков Михаил Александрович
  • Анашкин Анатолий Александрович
  • Чулючкин Вячеслав Владимирович
RU2506348C2
СПОСОБ ПРОГНОЗИРОВАНИЯ СРОКА ВЫВОДА В РЕМОНТ АНОДНОГО ЗАЗЕМЛИТЕЛЯ 2020
  • Никулин Сергей Александрович
  • Карнавский Евгений Львович
RU2744491C1
СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ИЗОЛЯЦИОННОГО ПОКРЫТИЯ УЧАСТКА ПОДЗЕМНОГО ТРУБОПРОВОДА 2019
  • Никулин Сергей Александрович
  • Карнавский Евгений Львович
RU2720647C1

Иллюстрации к изобретению RU 2 540 847 C2

Реферат патента 2015 года ТЕЛЕМЕХАНИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ И УПРАВЛЕНИЯ УСТАНОВКАМИ КАТОДНОЙ ЗАЩИТЫ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ

Изобретение относится к области телемеханики и автоматизированных систем измерения, контроля, регулирования, диагностики и управления удаленными объектами, а именно к системам коррозионного мониторинга объектов электрохимической защиты магистральных газопроводов, в частности установок катодной защиты. Технический результат - повышение надежности работы установок катодной защиты магистральных газопроводов. Телемеханическая система контроля и управления установками катодной защиты магистральных газопроводов содержит установки катодной защиты, диспетчерский пункт с автоматизированным рабочим местом диспетчера и канал связи между станциями катодной защиты и диспетчерским пунктом. Канал связи организован посредством подключения к воздушной линии электропередач высокочастотных заградителей и конденсаторов связи, соединенных с фильтрами присоединения, снабженными заземляющими ножами и подключенными к блокам высокочастотной связи, один из которых установлен в диспетчерском пункте и связан с автоматизированным рабочим местом диспетчера, а другие - в установках катодной защиты и связаны с блоками контроля и управления, кроме того, к каждому анодному заземлителю и к каждой точке дренажа трубопровода подключен измерительный преобразователь, связанный с блоком контроля и управления. 2 ил.

Формула изобретения RU 2 540 847 C2

Телемеханическая система контроля и управления установками катодной защиты магистральных газопроводов, содержащая установки катодной защиты со станциями катодной защиты, с блоками контроля и управления, трубопроводами, анодными заземлителями, контрольно-измерительными пунктами, датчиками потенциалов и датчиками скорости коррозии, диспетчерский пункт с автоматизированным рабочим местом диспетчера, канал связи между станциями катодной защиты и диспетчерским пунктом, отличающаяся тем, что канал связи организован посредством подключения к воздушной линии электропередач высокочастотных заградителей и конденсаторов связи, соединенных с фильтрами присоединения, снабженными заземляющими ножами и подключенными к блокам высокочастотной связи, один из которых установлен в диспетчерском пункте и связан с автоматизированным рабочим местом диспетчера, а другие - в установках катодной защиты и связаны с блоками контроля и управления, кроме того, к каждому анодному заземлителю и к каждой точке дренажа трубопровода подключен измерительный преобразователь, связанный с блоком контроля и управления.

Документы, цитированные в отчете о поиске Патент 2015 года RU2540847C2

Овальное сопло для пневматической экскавации фрезерного торфа 1955
  • Вебер Р.Я.
SU101545A1
СТАНЦИЯ ГРУППОВОЙ КАТОДНОЙ ЗАЩИТЫ 2011
  • Гилёв Олег Аркадьевич
RU2477765C1
Схема контроля на переменном токе 1949
  • Каргалов Н.И.
SU87425A1
EA 201101387 A1, 30.05.2012
DE 19832845 C1, 04.05.2000
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1

RU 2 540 847 C2

Авторы

Крючков Николай Михайлович

Баранов Борис Александрович

Владимиров Виктор Алексеевич

Фридман Иосиф Соломонович

Даты

2015-02-10Публикация

2013-05-13Подача