СПОСОБ И УСТРОЙСТВО ДЛЯ ВЫПАРИВАНИЯ КРИОГЕННЫХ СРЕД Российский патент 2015 года по МПК F17C9/02 

Описание патента на изобретение RU2541489C2

Изобретение относится к способу повышения энтальпии среды, при котором энергия отбирается у первого теплоносителя, состоящего из первого дымового газа, и у второго теплоносителя, содержащего воду и дымовой газ, и путем опосредованного теплообмена передается, соответственно, в среду, причем второй дымовой газ для образования второго теплоносителя подается в систему, содержащую воду, через насадку.

Кроме того, изобретение относится к устройству для осуществления этого способа.

Устройства, в которых теплоноситель, образованный из воды и дымового газа, используется для повышения энтальпии, уже в течение многих лет относятся к уровню техники и известны специалисту под названием испарителей ТХ LNG и теплоносителей Sub-Х®. Эта технология, в частности, используется для нагревания и/или выпаривания криогенных сред, как-то: диоксид углерода, жидкий природный газ и жидкий азот.

Нагреваемая и/или выпариваемая среда пропускается через трубы трубчатого теплообменника, установленного в резервуаре и полностью окруженного теплоносителем, состоящим из воды и дымового газа. От горелки к резервуару подводится горячий газ и под теплоносителем через насадку подается в теплоноситель. Образующиеся при этом пузырьки газа за счет своей подъемной силы обеспечивают образование турбулентного потока, так что трубы теплообменника омываются теплоносителем с большой скоростью обтекания. Благодаря большой поверхности газовых пузырьков дымовой газ охлаждается весьма эффективно, так что его температура быстро опускается до значений, при которых конденсируемые вещества, в частности вода, конденсируются. В результате для выпаривания или нагревания криогенной среды наряду с физическим теплом может использоваться также тепло, латентно накопленное в дымовом газе. Гидравлические условия обеспечивают высокий коэффициент теплопередачи между смесью дымового газа с водой и трубами теплообменника, благодаря чему теплообменник может быть выполнен весьма компактным.

Даже при условии бесконечно больших поверхностей теплообменника описанным методом температура криогенной среды может быть повышена максимум до температуры смеси дымового газа с водой. На практике среда достигает температуры обычно примерно на 10° ниже температуры теплоносителя. При повышении температуры смеси дымового газа с водой коэффициент полезного действия способа падает, поскольку все больше воды испаряется и с охлажденным воздухом выводится в атмосферу. Целесообразным оказалось поддержание смеси дымового газа с водой при температуре менее 30°С, однако предпочтительно при температуре даже менее 15°С. В результате этих ограничений максимально достижимая конечная температура среды ограничена примерно 20°С.

Если требуется конечная температура среды более 20°С, необходим следующий этап производства, на котором среда продолжает нагреваться в последовательно подключенном теплообменнике. Если при этом в качестве теплоносителя используется дымовой газ, нагревание происходит с относительно низким коэффициентом полезного действия, поскольку водяной пар, содержащийся в дымовом газе, остается в газовой фазе, и его теплота конденсации отводится в атмосферу без пользы.

Задачей изобретения является создание способа указанного вида, а также устройства для его осуществления, лишенных недостатков уровня техники.

Поставленная задача в отношении способа решается за счет того, что первый теплоноситель, охлажденный относительно среды, используется для образования второго теплоносителя.

Благодаря способу согласно изобретению энергию, накопленную в первом охлажденном теплоносителе, можно использовать для повышения энтальпии среды. В частности, имеющийся водяной пар конденсируется, а высвобождающаяся при этом теплота конденсации отводится в воду второго теплоносителя. Поскольку теплота конденсации возвращается в процесс, а не теряется в атмосфере, нагретая относительно второго теплоносителя и/или испарившаяся среда может продолжать нагреваться относительно второго теплоносителя без того, чтобы, как в уровне техники, это было связано с уменьшением термического коэффициента полезного действия.

Согласно изобретению предлагается усовершенствованный способ, чтобы для образования второго теплоносителя первый охлажденный дымовой газ подавался в воду через насадку независимо от второго дымового газа или вместе с ним.

Дымовые газы, необходимые обоим теплоносителям, образуются при сгорании топлива в горелке, к которой в качестве окислителя целесообразным образом подводятся воздух или воздух, обогащенный кислородом, или другая кислородосодержащая газовая смесь. В отличие от терминологии, принятой в химии, в рамках настоящего изобретения в качестве окислителя рассматриваются лишь такие вещества или смеси веществ, которые содержат кислород и могут отдавать его при реакции с топливом. Предпочтительно первый дымовой газ образуется в одной горелке, в то время как для образования второго дымового газа используется вторая горелка. Однако вариант способа согласно изобретению предусматривает использование только одной горелки, в которой образуется как первый, так и второй дымовой газ.

В предпочтительном варианте выполнения способа согласно изобретению первый теплоноситель образуется как кислородосодержащий дымовой газ, для чего первое топливо сжигается при избытке кислорода. После охлаждения относительно среды кислородосодержащий дымовой газ в качестве окислителя целесообразно полностью подавать в горелку, в которой в результате сгорания второго топлива образуется второй дымовой газ. В идеале первый дымовой газ образуется таким образом, чтобы во вторую горелку с первым охлажденным дымовым газом кислород подавался в количестве, достаточном для полного окисления второго топлива. Если количество кислорода, поданного с первым дымовым газом, недостаточно для полного сгорания второго топлива, то изобретение предусматривает, чтобы во вторую горелку дополнительно подавался дополнительный окислитель, в случае которого речь предпочтительно идет о воздухе.

Способ согласно изобретению, в частности, годится для выпаривания криогенной жидкости, как, например, жидкого природного газа, жидкого этилена, жидкого диоксида углерода или жидкого азота, и для перегрева образовавшейся при этом газовой фазы до температуры более 20°С. Однако она может быть использована также для нагрева сверхкритической среды или криогенного газа, как, например, диоксида углерода.

Кроме того, изобретение относится к устройству для повышения энтальпии среды, содержащему горелку для образования первого дымового газа и горелку для образования второго дымового газа, первый и второй теплообменники, причем в первом теплообменнике у первого теплоносителя, состоящего из первого дымового газа, и во втором теплообменнике у второго теплоносителя энергия отбирается и, соответственно, путем опосредованного теплообмена может передаваться в среду, а также к перемешивающему устройству, в котором для образования второго теплоносителя вода может смешиваться с дымовым газом и в котором установлен второй теплообменник.

Поставленная задача в отношении устройства решается за счет того, что оно содержит подающее устройство, с помощью которого первый теплоноситель, охлажденный относительно среды, для образования второго теплоносителя может подаваться в перемешивающее устройство.

При этом подающее устройство может быть выполнено таким образом, что оно допускает изменение химического состава первого охлажденного теплоносителя, прежде чем он будет подан в перемешивающее устройство.

Один из вариантов выполнения устройства согласно изобретению предусматривает, чтобы перемешивающее устройство было соединено с подающим устройством или подающими устройствами, с помощью которых первый и второй дымовые газы могут подаваться в перемешивающее устройство вместе или раздельно.

Другой вариант выполнения устройства согласно изобретению предусматривает, что горелка для образования первого дымового газа идентична горелке для образования второго дымового газа или отлична от нее.

Еще один вариант выполнения устройства согласно изобретению предусматривает, что горелка для образования второго дымового газа соединена с устройством, с помощью которого в нее в качестве окислителя подается первый дымовой газ, охлажденный относительно среды.

Устройство согласно изобретению пригодно для повышения энтальпии среды любого вида. Однако с особым успехом оно может быть использовано для выпаривания криогенной жидкости и нагревания образующейся при этом газовой фазы до температуры порядка более 20°.

Ниже изобретение более подробно поясняется на примере выполнения, схематически изображенном на фиг.1.

Пример выполнения изображает устройство для выпаривания криогенной жидкости, как, например, жидкого природного газа или жидкого азота, а также для перегрева газовой фазы, образующейся при испарении.

По трубопроводу 1 криогенная жидкость подается в теплообменник Е1, установленный в перемешивающем устройстве М и окруженный теплоносителем W, в случае которого речь идет о смеси газа с водой. В результате опосредованного теплообмена тепло теплоносителя W передается криогенной жидкости, вследствие чего она испаряется. По трубопроводу 2 из перемешивающего устройства М отводится газовая фаза, температура которой примерно на 10°С меньше температуры теплоносителя W, обычно составляющей около 20°С. Для передачи тепла теплоносителю W к перемешивающему устройству М по трубопроводам 3 подводится дымовой газ и под теплообменником Е1 через насадку подается в теплоноситель W, где он распределяется в виде мелких пузырьков. При этом дымовой газ 3 в непосредственном контакте с водой охлаждается настолько быстро, что содержащиеся в нем конденсируемые вещества, в первую очередь водяной пар, конденсируются. Точно так же, как его ощутимое тепло, высвобождающаяся при этом теплота конденсации отдается в воду, благодаря чему может быть использована не только низшая, но и высшая теплота сгорания дымового газа 3. Охлажденный дымовой газ отводится по трубопроводу 4.

Газовая фаза 2, образованная в теплообменнике Е1, подается дальше в теплообменник Е2, где она перегревается путем опосредованного теплообмена с дымовым газом 5, образованным в горелке В1. Перегретая газовая фаза отводится по трубопроводу 6. В горелке В1 топливо 7, как, например, природный газ, сжигается с окислителем 8, в случае которого речь обычно идет о воздухе. Сжигание производится при избытке кислорода, вследствие чего образующийся дымовой газ содержит кислород. Этот дымовой газ не охлаждается ниже точки росы содержащейся в нем воды, так что по трубопроводу 9 отводится кислородосодержащий дымовой газ, содержащий наряду со своей физической теплотой еще и латентную теплоту. Благодаря своему содержанию кислорода и его количеству охлажденный дымовой газ может подаваться в горелку В2 в качестве окислителя, с помощью которого топливо 10 полностью окисляется и превращается в дымовой газ 3.

Похожие патенты RU2541489C2

название год авторы номер документа
МЕТОД И УСТРОЙСТВО ДЛЯ ЭФФЕКТИВНОЙ И НИЗКОТОКСИЧНОЙ ЭКСПЛУАТАЦИИ ЭЛЕКТРОСТАНЦИЙ, А ТАКЖЕ ДЛЯ АККУМУЛИРОВАНИЯ И ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ 2007
  • Вестмайер Зигфрид
RU2435041C2
АНАЭРОБНАЯ ЭНЕРГОУСТАНОВКА С ДВИГАТЕЛЕМ СТИРЛИНГА ДЛЯ ПОДВОДНОЙ ЛОДКИ 2001
  • Кириллов Н.Г.
RU2187676C1
АНАЭРОБНАЯ ЭНЕРГОУСТАНОВКА С ДВИГАТЕЛЕМ СТИРЛИНГА ДЛЯ ПОДВОДНОЙ ЛОДКИ 2001
  • Кириллов Н.Г.
RU2187680C1
СПОСОБ СОЗДАНИЯ ТЯГИ ЖРД И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2005
  • Захаров Александр Михайлович
RU2290525C2
СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ И ПРОМЫШЛЕННЫХ ОТХОДОВ С ПОЛУЧЕНИЕМ СИНТЕЗ-ГАЗА 2011
  • Астановский Дмитрий Львович
  • Астановский Лев Залманович
  • Вертелецкий Петр Васильевич
RU2475677C1
АНАЭРОБНАЯ ЭНЕРГОУСТАНОВКА С ДВИГАТЕЛЕМ СТИРЛИНГА ДЛЯ ПОДВОДНЫХ ТЕХНИЧЕСКИХ СРЕДСТВ 2001
  • Кириллов Н.Г.
RU2187679C1
Способ газификации твердых топлив и газогенератор непрерывного действия для его осуществления 2024
  • Астановский Дмитрий Львович
  • Астановский Лев Залманович
  • Астановский Илья Дмитриевич
  • Кустов Павел Владимирович
RU2825949C1
СПОСОБ ПОДОГРЕВА МЕТАЛЛИЧЕСКОГО СКРАПА 2013
  • Никольский Владимир Евгеньевич
  • Савин Андрей Валерьевич
RU2552807C1
ПЕЧЬ И СПОСОБ СЖИГАНИЯ С КИСЛОРОДНЫМ ДУТЬЕМ ДЛЯ ПЛАВЛЕНИЯ СТЕКЛООБРАЗУЮЩИХ МАТЕРИАЛОВ 2008
  • Бодуэн Филипп
  • Константэн Габриель
  • Дюперре Паскаль
  • Гианг Сон Ха
  • Гран Бенуа
  • Жарри Люк
  • Кальсевик Робер
  • Леру Бертран
  • Пуарье Альбан
  • Тсиава Реми
RU2469961C2
УСТРОЙСТВО ДЛЯ СЖИГАНИЯ ТОПЛИВ И НАГРЕВА ТЕХНОЛОГИЧЕСКИХ СРЕД И СПОСОБ СЖИГАНИЯ ТОПЛИВ 2012
  • Курочкин Андрей Владиславович
RU2506495C1

Реферат патента 2015 года СПОСОБ И УСТРОЙСТВО ДЛЯ ВЫПАРИВАНИЯ КРИОГЕННЫХ СРЕД

Изобретение относится к способу, а также к устройству для повышения энтальпии среды, в которой энергия отбирается у первого теплоносителя, состоящего из первого дымового газа (5), и у второго теплоносителя (W), содержащего воду и дымовой газ, и путем опосредованного теплообмена передается, соответственно, в среду, причем второй дымовой газ (3) для образования второго теплоносителя (W) подается в систему, содержащую воду, через насадку. Первый теплоноситель (9), охлажденный относительно среды, используется для образования второго теплоносителя (W). 2 н. и 8 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 541 489 C2

1. Способ повышения энтальпии среды, при котором энергия отбирается у первого теплоносителя, состоящего из первого дымового газа (5), и у второго теплоносителя (W), содержащего воду и дымовой газ, и путем опосредованного теплообмена передается, соответственно, в среду, причем второй дымовой (3) газ для образования второго теплоносителя (W) подается в систему, содержащую воду, через насадку, отличающийся тем, что первый теплоноситель (9), охлажденный относительно среды, используют для образования второго теплоносителя (W).

2. Способ по п.1, отличающийся тем, что для образования второго теплоносителя (W) охлажденный первый дымовой газ (9) подается в систему, содержащую воду через насадку независимо от второго дымового газа (3) или вместе с ним.

3. Способ по п.1 или 2, отличающийся тем, что первый дымовой газ (5) и второй дымовой газ (3) образуются в одной и той же горелке или в разных горелках (В1, В2).

4. Способ по п.1, отличающийся тем, что первый дымовой газ (5) образуется при избытке кислорода и после охлаждения относительно среды подается в горелку для образования второго дымового газа (3) в качестве окислителя.

5. Способ по п.1, отличающийся тем, что он используется для выпаривания и/или нагревания жидкого природного газа или жидкого этилена, или жидкого азота, или диоксида углерода.

6. Устройство для повышения энтальпии среды (1), содержащее горелку (В1) для образования первого дымового газа (5) и горелку (В2) для образования второго дымового газа (3), первый (Е2) и второй теплообменники (Е1), причем в первом теплообменнике (Е2) у первого теплоносителя, состоящего из первого дымового газа (5), а во втором теплообменнике (Е1) у второго теплоносителя (W) энергия отбирается и, соответственно, путем опосредованного теплообмена может передаваться в среду (1, 2), а также на перемешивающее устройство (М), в котором для образования второго теплоносителя (W) вода может смешиваться с дымовым газом (3) и в котором установлен второй теплообменник (Е1), отличающееся тем, что оно содержит подающее устройство (9, В2, 3), с помощью которого первый теплоноситель, охлажденный относительно среды, для образования второго теплоносителя (W) может подаваться в перемешивающее устройство (М).

7. Устройство по п.6, отличающееся тем, что перемешивающее устройство (М) соединено с подающим устройством (3), с помощью которого первый и второй дымовые газы могут подаваться в перемешивающее устройство (М) вместе или раздельно.

8. Устройство по п.6, отличающееся тем, что горелка (В1) для образования первого дымового газа (5) идентична горелке (В2) для образования второго дымового газа (3) или отлична от нее.

9. Устройство по п.6, отличающееся тем, что горелка (В2) для образования второго дымового газа (3) соединена с подающим устройством (9), с помощью которого в нее в качестве окислителя подается первый дымовой газ, охлажденный относительно среды.

10. Устройство по одному из пп.6-9, отличающееся тем, что оно может быть использовано для выпаривания и/или нагревания жидкого природного газа или жидкого этилена, или жидкого азота, или диоксида углерода.

Документы, цитированные в отчете о поиске Патент 2015 года RU2541489C2

US 2008155996 A1, 3.07.2008
DE 3626359 A1, 11.2.1988
US 3726101 A, 10.04.1973
US 2005081535 A1, 21.04.2005
DE 19725822 A1, 24.12.1998

RU 2 541 489 C2

Авторы

Боккер Фокке

Даты

2015-02-20Публикация

2010-11-30Подача