СПОСОБ ЭКСПЛУАТАЦИИ ИМИТАТОРА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА Российский патент 2015 года по МПК B64G7/00 B64G1/50 

Описание патента на изобретение RU2541612C2

Изобретение относится к космическим аппаратам (КА), в частности к телекоммуникационным спутникам.

В настоящее время указанные спутники изготавливают состоящими из двух модулей: модуля служебных систем (МСС) и модуля полезной нагрузки (МПН). При этом завод-изготовитель спутника после изготовления конструкции МПН его отправляет в смежную организацию, где на конструкции МПН устанавливают приборы ретранслятора и проверяют работоспособность их во всем возможном диапазоне рабочих температур конструкции МПН на орбите, например, от минус 35°C до 55°C, которые обеспечивает система терморегулирования (СТР) спутника циркуляцией теплоносителя через жидкостные коллекторы панелей МПН.

Для обеспечения вышеуказанных испытаний МПН совместно с конструкцией МПН (см. фиг.1) (жидкостный контур которой заправлен теплоносителем) в смежную организацию поставляют:

- имитатор системы терморегулирования - ИСТР (см. фиг.2), выполненный, например, согласно патенту Российской Федерации (РФ) RU 2144893 «Система обеспечения теплового режима» [1]; жидкостный контур ИСТР заправлен теплоносителем;

- технологическое компенсационное устройство (ТКУ) (см. фиг.1), заправленное теплоносителем: оно подстыковано к жидкостному контуру МЛН при транспортировании МЛН в смежную организацию и предназначено для обеспечения работоспособности МЛН при широком диапазоне изменения температуры окружающего воздуха при транспортировании, например, от минус 50°C до плюс 50°C;

- заправленное теплоносителем малогабаритное компенсационное устройство (МКУ) (см. фиг.3), предназначенное для обеспечения работоспособности МПН в цеховых условиях, когда температура окружающего воздуха изменяется в узком диапазоне, например, (24±3)°C: в этих условиях для удобства монтажных работ вместо крупногабаритного ТКУ к жидкостному контуру МПН пристыковывают МКУ.

Перед и в процессе испытаний МПН (с установленными приборами) на работоспособность МКУ (его разъем гидравлический) отстыковывают от МПН и к разъемам гидравлическим МПН пристыковывают разъемы гидравлические ИСТР (см. фиг.4), и в процессе испытаний приборов температуру теплоносителя в жидкостном контуре МПН изменяют в диапазоне от минус 35 до плюс 55°C.

В процессе изготовления МПН такие стыковки (расстыковки) разъемов гидравлических ИСТР с МПН осуществляются многократно (более 10 раз) и в процессе каждой расстыковки разъемов гидравлических из жидкостного контура ИСТР - из жидкостной полости его компенсатора объема теряется объем теплоносителя, например, до ≈30 см3. С учетом того, что один и тот же ИСТР используется при изготовлении МПН различных спутников, объемы жидкостных контуров которых различны, такие потери теплоносителя из ИСТР в некоторый момент будут такими, что при испытаниях конкретного МЛН при низких температурах теплоносителя компенсатор объема ИСТР перестанет выполнять свою функцию: его сильфон будет полностью растянут (будет находиться на крайнем упоре) и на входе в ЭНА ИСТР давление теплоносителя (а также давление газовой полости) будет ниже допустимого, и ЭНА начнет работать в режиме кавитации - через жидкостный контур перестает циркулировать теплоноситель и приборы ретранслятора при испытаниях могут выйти из строя или снижена надежность их в будущем.

Следовательно, существенным недостатком вышеизложенного способа эксплуатации ИСТР [1] является недостаточно высокая надежность обеспечения эксплуатации ИСТР при испытаниях МЛН.

Как показал анализ, проведенный авторами, перед началом испытаний МЛН для обеспечения надежности их проведения периодически необходимо устанавливать, достаточен ли объем теплоносителя в жидкостной полости компенсатора объема ИСТР и в случае недостаточности этого объема туда необходимо дополнить требуемый объем теплоносителя.

Таким образом, существенным недостатком известного способа эксплуатации имитатора системы терморегулирования космического аппарата является недостаточно высокая надежность обеспечения его работоспособности в течение длительного времени при испытаниях различных модулей полезной нагрузки различных КА.

Целью предложенного технического решения является устранение вышеуказанного существенного недостатка.

Поставленная цель достигается тем, что в способе эксплуатации имитатора системы терморегулирования космического аппарата, содержащем холодильник, жидкостный контур с входным и выходным гидроразъемами, электронасосным агрегатом, компенсатором объема с газовой и жидкостной полостями и измерителями давления и температуры в них, включающий соединение входного и выходного гидроразъемов имитатора с выходным и входным гидроразъемами модуля полезной нагрузки для обеспечения испытаний его после отстыковки от него технологического компенсационного устройства, имеющего газовую и жидкостную полости, или малогабаритного компенсационного устройства с болтом, предназначенным для ограничения изменения положения его сильфона, периодически перед испытаниями модуля полезной нагрузки при средней температуре теплоносителя в жидкостных трактах имитатора и модуля, и газа в газовой полости имитатора, меньшей температуры заправки имитатора теплоносителем и газом, измеряют значения давления теплоносителя и газа в газовой полости компенсатора объема имитатора и сравнивают эти измеренные значения давления со значением минимально допустимого давления, определенным по соотношению:

,

где P2 - минимально допустимое давление газа в газовой полости имитатора, Па;

P1 - давление заправки газом газовой полости компенсатора объема имитатора, Па;

V1 - объем газовой полости при заправке имитатора, м3;

T1 - температура заправки газом газовой полости компенсатора объема и теплоносителем имитатора, K;

T2 - температура газа в газовой полости и теплоносителя в жидкостных трактах при контроле минимально допустимого давления газа в газовой полости компенсатора объема имитатора, K;

β - коэффициент температурного объемного расширения теплоносителя, 1/°K;

VΣ - суммарный объем теплоносителя в жидкостных трактах имитатора и модуля полезной нагрузки, м3,

и в случае, если измеренное значение давления газа в газовой полости компенсатора объема имитатора меньше вышеопределенного минимально допустимого значения давления, жидкостный тракт системы: имитатор - модуль разъединяют по гидравлическим разъемам и к одному из них присоединяют гидроразъем малогабаритного компенсационного устройства и из него выдавливают-дополняют в жидкостный тракт имитатора количество теплоносителя до изменения показания датчика давления имитатора до значения минимально допустимого значения давления, что и является, по мнению авторов, существенными отличительными признаками предложенного авторами технического решения.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого изобретения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом способе эксплуатации имитатора системы терморегулирования космического аппарата.

Принципиальная схема предложенного способа эксплуатации имитатора СТР КА изображена на фиг.1-6, где:

Фиг.2: 1 - имитатор СТР КА; 1.1 - холодильник; 1.2 -электронасосный агрегат; 1.3 - компенсатор объема; 1.3.1 - газовая полость; 1.3.2 - жидкостная полость; 1.4, 1.5 - гидроразъемы имитатора; 1.6 - датчик давления; 1.7 - датчик температуры; 1.8 - манометр; 1.9 - клапан заправочный.

Фиг.1, 3: 2 - модуль полезной нагрузки; 2.1, 2.2 - гидроразъемы модуля; 3 - технологическое компенсационное устройство (ТКУ); 3.1 - жидкостная полость; 3.2 - газовая полость; 3.3 - клапан заправочный; 3.4 - гидроразъем; 4 - малогабаритное компенсационное устройство (МКУ); 4.1 - сильфон; 4.2 - гидроразъем; 4.3 - болт.

Фиг.4: 1 - имитатор СТР; 2 - модуль полезной нагрузки; 3 - технологическое компенсационное устройство; 4 - малогабаритное компенсационное устройство.

Фиг.5: 3 - технологическое компенсационное устройство; 4 - малогабаритное компенсационное устройство.

Фиг.6: 1 - имитатор СТР; 2 - модуль полезной нагрузки; 4 - малогабаритное компенсационное устройство.

Эксплуатация имитатора СТР КА осуществляется следующим образом (см. фиг.6).

Периодически перед испытаниями модуля полезной нагрузки 2 при средней температуре теплоносителя в жидкостных трактах имитатора 1 и модуля 2, и газа в газовой полости 1.3.1 имитатора 1, меньшей температуры заправки имитатора теплоносителем и газом, измеряют значения давления 1.6 и 1.8 теплоносителя и газа в газовой полости компенсатора объема 1.3 имитатора и сравнивают эти измеренные значения давления со значением минимально допустимого давления, определенным по соотношению, которое установлено авторами на основе анализа физических процессов, происходящих в рассматриваемой системе:

,

где P2 - минимально допустимое давление газа 1.8 в газовой полости 1.3.1 имитатора 1, Па;

P1 - давление заправки газом газовой полости 1.3.1 компенсатора объема 1.3 имитатора 1, Па;

V1 - объем газовой полости 1.3.1 при заправке имитатора, м3;

T1 - температура 1.7 заправки газом газовой полости 1.3.1 компенсатора объема и теплоносителем имитатора, K;

T2 - температура 1.7 газа в газовой полости и теплоносителя в жидкостных трактах при контроле минимально допустимого давления газа в газовой полости 1.3.1 компенсатора объема имитатора, K;

β - коэффициент температурного объемного расширения теплоносителя, 1/°K;

VΣ - суммарный объем теплоносителя в жидкостных трактах имитатора 1 и модуля полезной нагрузки 2, м3,

и в случае, если измеренное значение давления газа в газовой полости компенсатора объема имитатора меньше вышеопределенного минимально допустимого значения давления, жидкостный тракт системы: имитатор 1 - модуль 2 разъединяют по гидравлическим разъемам, например, по 1.4-1.2, и к одному из них, например, к 1.4, присоединяют гидроразъем 4.2 малогабаритного компенсационного устройства 4 и из него выдавливают - дополняют в жидкостный тракт имитатора 1 количество теплоносителя до изменения показания датчика давления 1.8 (1.7) имитатора 1 до значения минимально допустимого значения давления.

Таким образом, как следует из вышеизложенного, в результате периодического дополнения объема теплоносителя в имитаторе СТР 1 до требуемого, выполняя вышеуказанные требования по повышению давления газа 1.8 в газовой полости компенсатора объема 1.3 до требуемого минимально возможного значения, обеспечивается высоконадежная эксплуатация имитатора СТР КА в смежной организации. При этом необходимо иметь ввиду еще следующий фактор: с каждым конкретным модулем полезной нагрузки 2 прибывает новый технологический компенсатор объема - ТКУ 3 с соответствующим запасом теплоносителя в его жидкостной полости, который будет использоваться с помощью МКУ 4 для обеспечения надежной эксплуатации ИСТР 1 КА в смежной организации в течение длительного (требуемого) времени, т.е. таким образом, достигается цель изобретения.

Похожие патенты RU2541612C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ МОДУЛЯ ПОЛЕЗНОЙ НАГРУЗКИ КОСМИЧЕСКОГО АППАРАТА 2003
  • Козлов Альберт Гаврилович
  • Бартенев Владимир Афанасьевич
  • Кесельман Геннадий Давыдович
  • Шелудько Вячеслав Григорьевич
  • Халиманович Владимир Иванович
  • Михнев Михаил Михайлович
  • Акчурин Владимир Петрович
  • Акчурин Георгий Владимирович
  • Близневский Александр Сергеевич
  • Роскин Сергей Михайлович
  • Головенкин Евгений Николаевич
  • Туркенич Роман Петрович
  • Гупало Виктор Кузьмич
  • Загар Олег Вячеславович
  • Шилкин Олег Валентинович
  • Дмитриев Геннадий Валерьевич
RU2269457C2
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2018
  • Колесников Анатолий Петрович
  • Легостай Игорь Васильевич
  • Шилкин Олег Валентинович
  • Акчурин Владимир Петрович
  • Дмитриев Геннадий Валерьевич
  • Марченко Игорь Анатольевич
  • Свинин Тимофей Петрович
  • Овчинников Константин Васильевич
  • Бакуров Евгений Юрьевич
  • Соколов Сергей Николаевич
RU2698573C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2005
  • Козлов Альберт Гаврилович
  • Бартенев Владимир Афанасьевич
  • Шелудько Вячеслав Григорьевич
  • Халиманович Владимир Иванович
  • Акчурин Владимир Петрович
  • Близневский Александр Сергеевич
  • Головенкин Евгений Николаевич
  • Дедюлин Александр Леонидович
  • Загар Олег Вячеславович
  • Никитин Владислав Николаевич
  • Попов Василий Владимирович
  • Роскин Сергей Михайлович
  • Сергеев Юрий Дмитриевич
  • Томчук Альберт Владимирович
  • Туркенич Роман Петрович
  • Шилкин Олег Валентинович
RU2288143C2
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ СВЯЗНОГО СПУТНИКА 1999
  • Акчурин В.П.
  • Бартенев В.А.
  • Загар О.В.
  • Козлов А.Г.
  • Корчагин Е.Н.
  • Леканов А.В.
  • Талабуев Е.С.
  • Томчук А.В.
  • Туркенич Р.П.
  • Халиманович В.И.
  • Шилкин О.В.
RU2158703C1
СПОСОБ ИСПЫТАНИЙ КОСМИЧЕСКОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Акчурин В.П.
  • Бартенев В.А.
  • Головенкин Е.Н.
  • Загар О.В.
  • Козлов А.Г.
  • Корчагин Е.Н.
  • Томчук А.В.
  • Туркенич Р.П.
  • Халиманович В.И.
  • Шилкин О.В.
RU2200689C2
СПОСОБ ЗАПРАВКИ ЖИДКОСТНОГО КОНТУРА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ ТЕПЛОНОСИТЕЛЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Козлов Альберт Гаврилович
  • Бартенев Владимир Афанасьевич
  • Кесельман Геннадий Давыдович
  • Шелудько Вячеслав Григорьевич
  • Халиманович Владимир Иванович
  • Михнев Михаил Михайлович
  • Акчурин Владимир Петрович
  • Близневский Александр Сергеевич
  • Роскин Сергей Михайлович
  • Головенкин Евгений Николаевич
  • Туркенич Роман Петрович
  • Загар Олег Вячеславович
  • Шилкин Олег Валентинович
  • Дмитриев Геннадий Валерьевич
  • Голованов Юрий Матвеевич
RU2269461C2
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2000
  • Акчурин В.П.
  • Бартенев В.А.
  • Загар О.В.
  • Козлов А.Г.
  • Талабуев Е.С.
  • Томчук А.В.
  • Туркенич Р.П.
  • Халиманович В.И.
  • Шилкин О.В.
RU2191359C2
СПОСОБ КОМПОНОВКИ КОСМИЧЕСКОГО АППАРАТА 2013
  • Тестоедов Николай Алексеевич
  • Косенко Виктор Евгеньевич
  • Халиманович Владимир Иванович
  • Головенкин Евгений Николаевич
  • Попов Василий Владимирович
  • Сорокваша Геннадий Григорьевич
  • Колесников Анатолий Петрович
  • Анкудинов Александр Владимирович
  • Акчурин Георгий Владимирович
  • Доставалов Александр Валентинович
  • Вилков Юрий Вячеславович
  • Кувакин Константин Леонардович
  • Шилкин Олег Валентинович
  • Акчурин Владимир Петрович
RU2541598C2
СПОСОБ КОНТРОЛЯ КОЛИЧЕСТВА ТЕПЛОНОСИТЕЛЯ В ЖИДКОСТНОМ ТРАКТЕ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2009
  • Халиманович Владимир Иванович
  • Загар Олег Вячеславович
  • Леканов Анатолий Васильевич
  • Колесников Анатолий Петрович
  • Акчурин Георгий Владимирович
  • Синиченко Михаил Иванович
  • Шилкин Олег Валентинович
  • Акчурин Владимир Петрович
  • Никитин Владислав Николаевич
RU2404089C1
СПОСОБ ИСПЫТАНИЙ КОСМИЧЕСКОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Акчурин В.П.
  • Бартенев В.А.
  • Близневский А.С.
  • Головенкин Е.Н.
  • Загар О.В.
  • Козлов А.Г.
  • Корчагин Е.Н.
  • Попов В.В.
  • Роскин С.М.
  • Талабуев Е.С.
  • Томчук А.В.
  • Туркенич Р.П.
  • Халиманович В.И.
  • Шилкин О.В.
RU2209751C2

Иллюстрации к изобретению RU 2 541 612 C2

Реферат патента 2015 года СПОСОБ ЭКСПЛУАТАЦИИ ИМИТАТОРА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Изобретение относится преимущественно к наземным испытаниям и отработке системы терморегулирования (СТР) космического аппарата. Согласно изобретению, заблаговременно определяют недостающее количество теплоносителя в системе, состоящей из имитатора СТР и модуля полезной нагрузки (ПН). Для этого периодически перед испытаниями модуля ПН измеряют температуру теплоносителя в жидкостных трактах указанных имитатора и модуля. При средней измеренной температуре, меньшей температуры заправки имитатора теплоносителем и газом, измеряют давление газа в газовой полости компенсатора объема имитатора СТР. Сравнивают это давление с минимально допустимым, определяемым по некоторому соотношению. Если измеренное давление меньше минимально допустимого, то дополняют жидкостный тракт имитатора недостающим количеством теплоносителя из отдельного малогабаритного компенсационного устройства. Техническим результатом изобретения является повышение надежности эксплуатации имитатора СТР в течение длительного времени. 6 ил.

Формула изобретения RU 2 541 612 C2

Способ эксплуатации имитатора системы терморегулирования космического аппарата, содержащего холодильник, жидкостный контур с входным и выходным гидроразъемами, электронасосным агрегатом, компенсатором объема с газовой и жидкостной полостями и измерителями давления и температуры в них, включающий соединение входного и выходного гидроразъемов имитатора с выходным и входным гидроразъемами модуля полезной нагрузки для обеспечения испытаний его после отстыковки от него технологического компенсационного устройства, имеющего газовую и жидкостную полости, или малогабаритного компенсационного устройства с болтом, предназначенным для ограничения изменения положения его сильфона, отличающийся тем, что периодически перед испытаниями модуля полезной нагрузки при средней температуре теплоносителя в жидкостных трактах имитатора и модуля, и газа в газовой полости имитатора, меньшей температуры заправки имитатора теплоносителем и газом, измеряют значения давления теплоносителя и газа в газовой полости компенсатора объема имитатора и сравнивают эти измеренные значения давления со значением минимально допустимого давления, определенным по соотношению:
,
где P2 - минимально допустимое давление газа в газовой полости имитатора, Па,
P1 - давление заправки газом газовой полости компенсатора объема имитатора, Па,
V1 - объем газовой полости при заправке имитатора, м3,
T1 - температура заправки газом газовой полости компенсатора объема и теплоносителем имитатора, K,
T2 - температура газа в газовой полости и теплоносителя в жидкостных трактах при контроле минимально допустимого давления газа в газовой полости компенсатора объема имитатора, K,
β - коэффициент температурного объемного расширения теплоносителя, 1/K,
VΣ - суммарный объем теплоносителя в жидкостных трактах имитатора и модуля полезной нагрузки, м3,
и в случае, если измеренное значение давления газа в газовой полости компенсатора объема имитатора меньше вышеопределенного минимально допустимого значения давления, жидкостный тракт системы: имитатор - модуль разъединяют по гидравлическим разъемам и к одному из них присоединяют гидроразъем малогабаритного компенсационного устройства и из него выдавливают, дополняя в жидкостный тракт имитатора, количество теплоносителя до изменения показания датчика давления имитатора до значения минимально допустимого значения давления.

Документы, цитированные в отчете о поиске Патент 2015 года RU2541612C2

СИСТЕМА ОБЕСПЕЧЕНИЯ ТЕПЛОВОГО РЕЖИМА 1998
  • Акчурин В.П.
  • Голованов Ю.М.
  • Дюдин А.Е.
  • Загар О.В.
  • Халиманович В.И.
  • Шилкин О.В.
RU2144893C1
СПОСОБ ИСПЫТАНИЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 1996
  • Акчурин В.П.
  • Баранов М.В.
  • Бодунов А.С.
  • Загар О.В.
  • Козлов А.Г.
  • Халиманович В.И.
RU2132805C1
СПОСОБ ИСПЫТАНИЙ КОСМИЧЕСКОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Акчурин В.П.
  • Бартенев В.А.
  • Головенкин Е.Н.
  • Загар О.В.
  • Козлов А.Г.
  • Корчагин Е.Н.
  • Томчук А.В.
  • Туркенич Р.П.
  • Халиманович В.И.
  • Шилкин О.В.
RU2200689C2
СПОСОБ ИЗГОТОВЛЕНИЯ МОДУЛЯ ПОЛЕЗНОЙ НАГРУЗКИ КОСМИЧЕСКОГО АППАРАТА 2003
  • Козлов Альберт Гаврилович
  • Бартенев Владимир Афанасьевич
  • Кесельман Геннадий Давыдович
  • Шелудько Вячеслав Григорьевич
  • Халиманович Владимир Иванович
  • Михнев Михаил Михайлович
  • Акчурин Владимир Петрович
  • Акчурин Георгий Владимирович
  • Близневский Александр Сергеевич
  • Роскин Сергей Михайлович
  • Головенкин Евгений Николаевич
  • Туркенич Роман Петрович
  • Гупало Виктор Кузьмич
  • Загар Олег Вячеславович
  • Шилкин Олег Валентинович
  • Дмитриев Геннадий Валерьевич
RU2269457C2
RU 2011133113 A, 10.02.2013;
US 6332591 В1, 25.12.2001
US 6216097 В1, 10.04.2001;
US 6031486 А, 29.02.2000

RU 2 541 612 C2

Авторы

Халиманович Владимир Иванович

Головенкин Евгений Николаевич

Сорокваша Геннадий Григорьевич

Колесников Анатолий Петрович

Анкудинов Александр Владимирович

Акчурин Георгий Владимирович

Воловиков Виталий Гавриилович

Шилкин Олег Валентинович

Акчурин Владимир Петрович

Ураков Сергей Андреевич

Даты

2015-02-20Публикация

2013-04-17Подача