Изобретение относится к области элементов систем автоматики и может использоваться при автоматизации технологических процессов для преобразования напряжения или тока в частоту импульсов.
Известен частотно-широтно-импульсный преобразователь (ЧШИП), содержащий интегратор, релейные элементы, оптоэлектронные ключи, фильтр (А.с. 1141424 СССР, G06G 7/12. Развертывающий операционный усилитель / Цытович Л.И., Дегтярев В.А., Рахматулин P.M. и др. (СССР). - №3563903/24; заявлено 17.03.83; опубл.23.02.85, бюл. №7).
Недостатком устройства является нелинейность его статической характеристики «аналоговый входной сигнал - частота выходных импульсов», а также отсутствие в его составе канала диагностирования, позволяющего определить полярность подключения выходных клемм устройства к приемнику его выходного сигнала.
Известен ЧШИП интегрирующего типа, содержащий сумматоры, интеграторы, усилители постоянного тока, формирователи импульсов управления, вентильные каскады, релейный элемент, входные и выходные клеммы (А.с. 873374 СССР, Н02Р 13/16. «Устройство для импульсно-фазового управления вентильным преобразователем» / Гафиятуллин Р.Х., Суворов Г.В., Цытович Л.И и др. (СССР). - №2680999/07; заявлено 02.11.78; опубл. 15.10.81, бюл. №38).
Недостатком данного устройства также является отсутствие в его составе канала диагностирования, позволяющего определить полярность подключения выходных клемм к приемнику выходного сигнала.
Известно устройство (а.с. №1145350 СССР, G06G 7/12, «Развертывающий операционный усилитель с непрерывным контролем» / Л.И. Цытович - 1985, бюл. №10), содержащее частотно-широтно-импульсный преобразователь с системой пассивной динамической диагностики, контролирующей наличие автоколебательного процесса в системе, реализованной на интеграторе, релейном элементе, пропорционально-дифференцирующем звене, демодуляторе, ключевом элементе с зоной нечувствительности.
Данное устройство отличается простотой технической реализации контура диагностики, однако этот контур не в состоянии диагностировать полярность подключения устройства к объекту управления.
По составу функциональных блоков и связям между ними наиболее близким к предлагаемому устройству является устройство «Преобразователь углового перемещения в частоту» (а.с.№960886 СССР, G08C 9/04, Н03С 3/18, Л.И. Цытович, 1982, бюл. №35).
Устройство содержит вращающийся трансформатор, релейный элемент, резисторы. Вращающийся трансформатор выполняет одновременно три функции: амплитудного модулятора, сумматора и «интегратора». Фактически данная структура может быть представлена в виде последовательно включенных амплитудного модулятора, сумматора, интегратора и релейного элемента, выход которого соединен со вторым входом сумматора и подключен к выходной клемме устройства, что полностью повторяет основной канал преобразования в предлагаемом преобразователе напряжения (тока) в частоту импульсов (ПНЧ).
Недостатком устройства-прототипа также является отсутствие в его составе канала диагностирования, позволяющего определить полярность (фазу) подключения выходных клемм к приемнику сигнала.
В основу изобретения положена техническая задача, заключающаяся в повышении надежности преобразователя напряжения в частоту импульсов за счет диагностирования полярности подключения его выходных клемм к приемнику информации.
Преобразователь напряжения в частоту импульсов содержит последовательно включенные источник входного сигнала, амплитудный модулятор, первый сумматор, интегратор, релейный элемент, выход которого соединен со вторым входом первого сумматора и подключен ко второму входу амплитудного модулятора, шину нулевого потенциала, выходную клемму, и отличается от известного устройства тем, что в него введены последовательно включенные форсирующее звено, демодулятор и второй сумматор, причем вход форсирующего звена соединен с выходом релейного элемента, выход которого подключен к первому входу второго сумматора, второй вход которого соединен с выходом демодулятора, а выход сумматора подключен к выходной клемме.
Поставленная техническая задача достигается за счет того, что в ПНЧ введены последовательно включенные форсирующее звено, демодулятор и второй сумматор, причем вход форсирующего звена соединен с выходом релейного элемента, выход которого подключен к первому входу второго сумматора, второй вход которого соединен с выходом демодулятора, а выход сумматора подключен к выходной клемме. Тем самым намеренно искажается форма выходного сигнала ПНЧ. В случае правильного подключения ПНЧ к объекту это искажение обнаруживается системой диагностирования.
Изобретение поясняется следующими чертежами:
Фиг.1 - функциональная схема предлагаемого устройства;
Фиг.2 - пример подключения ПНЧ к объекту управления и один из возможных вариантов контура диагностирования;
Фиг.3 - временные диаграммы сигналов ПНЧ без учета вносимых искажений;
Фиг.4 - временные диаграммы сигналов ПНЧ с учетом вносимых искажений.
В состав ПНЧ (фиг.1) входят амплитудный модулятор 1, первый 2 и второй 3 сумматоры, интегратор 4, релейный элемент 5, форсирующее звено 6, демодулятор 7, входная клемма 8, выходная клемма 9, шина нулевого потенциала 10. Перечисленные звенья в совокупности образуют ПНЧ 11.
На фиг.2 показано подключение ПНЧ 11 к объекту 12, имеющему систему управления 13 с входными клеммами 14, 15, и канал диагностирования, выполненный, например, на основе последовательно включенных ключевого элемента 16, счетного триггера 17, фильтра 18 для выделения переменной составляющей сигнала с выхода триггера 17, двухполупериодного демодулятора 19 и светодиодного индикатора 20.
Перечисленные элементы имеют следующие характеристики.
Амплитудный модулятор 1 формирует на выходе переменный сигнал с амплитудой, равной амплитуде входного сигнала на клемме 8, и с частотой выходных импульсов релейного элемента 5.
Сумматоры 2, 3 выполнены с единичным коэффициентом передачи по каждому из входов.
Интегратор 4 реализует передаточную функцию вида W(p)=1/Tp, где Т - постоянная времени. Знак выходного сигнала интегратора 4 инвертирован по отношению к знаку выходного сигнала сумматора 2.
Релейный элемент 5 имеет неинвертирующую петлю гистерезиса с порогами переключения ±b. Его выходной сигнал меняется дискретно в пределах ±А.
Форсирующее звено 6 формирует импульсы малой длительности синхронно с изменением знака выходного сигнала релейного элемента 5 и имеет передаточную функцию вида W(p)=T1p/(T2p+1), где Т1, Т2 - постоянные времени.
Демодулятор 7 является однополупериодным и выделяет на выходе, например, импульсы положительной полярности, поступающие с выхода форсирующего звена 6.
Элементы, изображенные на фиг.2, выполнены со следующими характеристиками.
Ключевой элемент 16 канала диагностирования имеет зону нечувствительности +C. Если входной сигнал превышает эту зону нечувствительности, ключ 16 переходит в состояние логической «1».
Счетный триггер 17 переключается синхронно с выходными импульсами ключа 16 и формирует на выходе биполярные импульсы со средним нулевым значением.
Фильтр 18 имеет характеристику, идентичную передаточной функции блока 6 (фиг.1), но его постоянные времени выбираются таким образом, чтобы внести минимальные искажения в передаваемый сигнал.
Демодулятор 19 выпрямляет выходные импульсы фильтра 18 и формирует сигнал «1», под действием которого светодиодный индикатор переходит в активное состояние.
Принцип работы устройства следующий.
Рассмотрим работу ПНЧ при отсутствии звеньев 3, 6, 7.
Сумматор 2, интегратор 4 и релейный элемент 5 в совокупности образуют автоколебательную систему, когда при отсутствии входного сигнала на клемме 8 (фиг.3 а) частота выходных импульсов релейного элемента 5 минимальна (фиг.3 в).
При наличии входного сигнала положительной полярности (фиг.3 а) на выходе амплитудного модулятора 1 формируются импульсы, синфазные по отношению к импульсам с выхода релейного элемента 5 (фиг.3 б, в). Амплитуда этих импульсов определяется уровнем входного сигнала на входе 8.
Наличие синфазных импульсов с выхода амплитудного модулятора 1 приводит к росту производной выходного пилообразного сигнала интегратора 4 (фиг.3 б, в), в результате чего пропорционально входному сигналу повышается частота выходных импульсов релейного элемента 5.
Звенья 3, 6, 7 введены в схему ПНЧ 11 с целью создания асимметрии его выходных импульсов, которая может быть обнаружена блоком диагностирования объекта управления 12.
Форсирующее звено 6 формирует на выходе биполярные импульсы малой длительности (фиг.4 б) синхронно с моментами переключения релейного элемента 5 (фиг.4 а).
Демодулятор 7 пропускает на выход только импульсы положительной полярности (фиг.4 г), которые с помощью сумматора 3 суммируются с выходным сигналом релейного элемента 5 (фиг.4 д).
Под действием выходного сигнала ПНЧ 11 кратковременно переключается ключ 16, так как суммарная амплитуда импульсов с выхода 9 превышает его порог срабатывания +C.
Триггер 17 преобразует выходные импульсы ключа 16 в биполярный сигнал со средним нулевым значением, которые через фильтр 18 подается на демодулятор 19, преобразуясь в сигнал логической «1». В результате возникает свечение индикатора 20, что сигнализирует о правильном подключении выходов ПНЧ 11 к системе 13.
Если выходы ПНЧ 11 подключены неверно, то его выходной сигнал на зажимах 14, 15 будет восприниматься как «перевернутый» (фиг.4 е), в результате чего сигнал на выходе демодулятора 19 уменьшится до нуля, и световая индикация прекратится, указывая на ошибку в подключении блока 11 к объекту 12.
Таким образом, за счет введения блоков 3, 6, 7 расширяются функциональные возможности процесса диагностики ПНЧ 11 и повышается надежность работы системы в целом.
Рассмотренное техническое решение предполагается использовать в системе управления комплексом автономных транспортных объектов.
название | год | авторы | номер документа |
---|---|---|---|
РЕВЕРСИВНЫЙ ЧИСЛО-ИМПУЛЬСНЫЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ | 2009 |
|
RU2429563C1 |
МНОГОЗОННЫЙ ИНТЕГРИРУЮЩИЙ РЕГУЛЯТОР | 2014 |
|
RU2546084C1 |
ФАЗОСДВИГАЮЩЕЕ УСТРОЙСТВО | 2005 |
|
RU2288532C1 |
ФАЗОСДВИГАЮЩЕЕ УСТРОЙСТВО | 2006 |
|
RU2320071C1 |
УСТРОЙСТВО ДЛЯ ПОТЕНЦИАЛЬНОГО РАЗДЕЛЕНИЯ ЦЕПЕЙ ПОСТОЯННОГО ТОКА | 2011 |
|
RU2469392C1 |
ФАЗОСДВИГАЮЩЕЕ УСТРОЙСТВО | 2008 |
|
RU2373624C1 |
СИСТЕМА УПРАВЛЕНИЯ ГРУППОЙ АСИНХРОННЫХ ЭЛЕКТРОПРИВОДОВ ВОДЯНЫХ НАСОСОВ | 2003 |
|
RU2251206C2 |
МНОГОЗОННЫЙ РАЗВЕРТЫВАЮЩИЙ ПРЕОБРАЗОВАТЕЛЬ | 2005 |
|
RU2282245C1 |
УСТРОЙСТВО СИНХРОНИЗАЦИИ | 2008 |
|
RU2383985C1 |
СИСТЕМА УПРАВЛЕНИЯ ГРУППОЙ ЭЛЕКТРОПРИВОДОВ С ПАРАЛЛЕЛЬНЫМИ КАНАЛАМИ РЕГУЛИРОВАНИЯ | 2014 |
|
RU2565598C1 |
Изобретение относится к области автоматики и может использоваться при автоматизации технологических процессов. Достигаемый технический результат - повышение надежности преобразования напряжения в частоту импульсов путем диагностирования полярности подключения его выходных клемм к приемнику информации. Преобразователь напряжения в частоту импульсов содержит последовательно включенные источник входного сигнала, амплитудный модулятор, первый сумматор, интегратор, релейный элемент, выход которого соединен со вторым входом первого сумматора и подключен к второму входу амплитудного модулятора, шину нулевого потенциала, выходную клемму, последовательно включенные форсирующее звено, демодулятор и второй сумматор, причем вход форсирующего звена соединен с выходом релейного элемента, выход которого подключен к первому входу второго сумматора, второй вход которого соединен с выходом демодулятора, а выход сумматора подключен к выходной клемме. 4 ил.
Преобразователь напряжения в частоту импульсов, содержащий последовательно включенные источник входного сигнала, амплитудный модулятор, первый сумматор, интегратор, релейный элемент, выход которого соединен со вторым входом первого сумматора и подключен к второму входу амплитудного модулятора, шину нулевого потенциала, выходную клемму, отличающийся тем, что в него введены последовательно включенные форсирующее звено, демодулятор и второй сумматор, причем вход форсирующего звена соединен с выходом релейного элемента, выход которого подключен к первому входу второго сумматора, второй вход которого соединен с выходом демодулятора, а выход сумматора подключен к выходной клемме.
Преобразователь углового перемещения в частоту | 1981 |
|
SU960886A1 |
Авторы
Даты
2015-04-10—Публикация
2014-04-16—Подача