СПОСОБ ОБНАРУЖЕНИЯ РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ ПРИЗЕМНОГО СЛОЯ АТМОСФЕРЫ Российский патент 2015 года по МПК G01N21/3504 G01T1/169 

Описание патента на изобретение RU2547002C1

Изобретение относится к области мониторинга радиационной обстановки и установления факта появления в атмосфере радиоактивного облака.

В условиях аварийного выброса радиоактивных веществ одним из основных факторов, оказывающим вредное воздействие на людей, является внутреннее облучение, формируемое в результате ингаляционной инкорпорации продуктов выброса [1]. Избежать поступления в организм недопустимо больших количеств радиоактивных веществ в ряде случаев возможно за счет реализации достаточно простых мер безопасности, таких как герметизация помещений с помощью подручных средств, ношение респираторов и т.п. Однако для начала использования средств защиты и реализации защитных мероприятий должна быть подана соответствующая команда, основанная на установлении факта наличия загрязнения воздуха.

Существующие в настоящее время методы определения объемной активности радиоактивных аэрозолей в приземном слое атмосферы основываются на прокачивании исследуемого воздуха через фильтр с последующим измерением активности осажденного аэрозоля на радиометрической установке.

Для концентрирования радиоактивных аэрозолей из атмосферы отбор пробы воздуха осуществляется, как правило, на твердый фильтрующий материал, в качестве которого могут применяться, в частности, хлопчатобумажная или стеклянная вата, минеральная шерсть, фильтровальная бумага. В отечественной практике аэрозольных измерений широко используют фильтры из тонковолокнистых полимерных материалов - аналитические аэрозольные фильтры Петрянова (АФА) [2-6].

Кроме волокнистых фильтров для определения концентрации радиоактивных аэрозолей в воздухе могут использоваться электрофильтры, а также фильтры, где в качестве фильтрующего материала используется жидкость. Электрофильтры представляют собой набор перфорированных осадительных электродов, размещенных перпендикулярно к газовому потоку. На электродах создается напряжение 20-30 кВ, а ток ионизации достигает 1,5-1,6 мА [2, 3]. Аэрозоль из прокачиваемого воздуха собирается на плоскую съемную мишень электрофильтра. По измерению скорости счета от активной мишени, объему прокачиваемого воздуха, эффективности радиометрической установки с учетом эффективности электрофильтра рассчитывают концентрацию аэрозолей в воздухе. Из-за достаточно высокой сложности аппаратуры и ее обслуживания, значительного проскока мелкодисперсных аэрозолей, а также резкого снижения эффективности улавливания аэрозолей с увеличением влажности воздуха электрофильтры не нашли широкого применения на практике [2, З].

При использовании в качестве фильтрующего элемента жидкости (дистиллированная вода, растворы кислот и щелочей и т.п.) по измеренной активности полученного раствора и известному объему прокаченного через него воздуха находят концентрацию аэрозолей в воздухе. Эффективность данного метода не превышает 30-50% и определяется, в основном, скоростью барботажа (прокачки) воздуха. Скорость прокачки воздуха не должна превышать 0,6-0,9 м3/ч, в противном случае аэрозоли будут вместе с пузырьками воздуха проходить через жидкость, не контактируя с ней [2, 3, 6, 7].

Рассмотренные методы осаждения радиоактивных аэрозолей на фильтрующие элементы в настоящее время используются в различных типах переносных и стационарных радиометров объемной активности аэрозолей [8-10].

Существенным недостатком изложенных методов является то, что измерение параметров загрязнения начинается уже после начала воздействия поражающего фактора. Естественно, что в таких условиях выдача сигнала на применение средств защиты может произойти уже после поступления с воздухом в организмы людей неприемлемо больших количеств радиоактивных веществ. Более того, радиоактивное облако уже может покинуть район проживания людей до начала реализации защитных мероприятий.

Для того чтобы предотвратить поражение людей, необходимо организовать заблаговременное оповещение о начале загрязнения. Использование существующих радиометров объемной активности предполагает организацию системы из приборов, расставленных с определенной периодичностью вне населенного пункта. При этом необходимо будет задействовать достаточно большое количество приборов, чтобы обеспечить приемлемую вероятность регистрации начала радиоактивного загрязнения воздуха, так как если расставить приборы с интервалом, превышающим диаметр облака, то будет существовать возможность прохождения облака мимо всех приборов.

В целом необходимо отметить, что существующие типы радиометров объемной активности, в силу заложенных в них принципов работы и конструктивных особенностей, не являются, вообще говоря, приборами контроля динамически меняющейся обстановки и предназначены для эффективного решения задачи определения уровней загрязненности вблизи долговременных источников радиоактивного загрязнения атмосферы.

Предлагаемый способ позволяет дистанционно контролировать появление в воздухе радиоактивных веществ. Его сущность определяется положениями, изложенными ниже.

Под воздействием ионизирующих излучений радионуклидов в воздухе образуются оксиды азота и озон. Интенсивность образования этих веществ определяется энергетическими выходами реакций. В воздухе под действием гамма-излучения выход озона в среднем равен 3,5 молекулы на 100 эВ. При этом концентрация озона пропорциональна дозе облучения [11]:

где C(O3) - концентрация озона, мг/м3;

P - мощность дозы, Р/ч;

t - время действия излучения, ч.

Выход оксидов (в основном в виде NO2, NO, N2O и азотной кислоты) составляет около 2 молекул на 100 эВ. При этом концентрация оксидов азота также пропорциональна дозе облучения [11]:

где C(NOx) - концентрация оксидов азота, мг/м3.

К числу наиболее чувствительных методов, позволяющих определить достаточно незначительное изменение газового состава воздуха, относится спектрорадиометрия в инфракрасном диапазоне электромагнитных волн.

В этой связи необходимо выбрать тот компонент радиолиза воздуха, который имеет наиболее сильно выраженные линии поглощения в окне прозрачности атмосферы для инфракрасного излучения.

На фиг.1-4 приведен спектр пропускания атмосферы и спектры поглощения озона и оксидов азоты и диапазоне от 700-1400 см-1 [12]. Спектр NO не приведен, так как у этого газа в рассматриваемом диапазоне излучения практически полностью отсутствуют линии поглощения.

Из приведенных данных видно, что наиболее сильными линиями поглощения в окне прозрачности атмосферы обладает озон. Закись азота N2O имеет слабые линии поглощения, лежащие практически на краю окна прозрачности атмосферы. Диоксид азота NO2 имеет еще более слабые линии поглощения, лежащие на другом конце диапазона длин волн окна прозрачности. Это делает проблематичным регистрацию появления в атмосфере малых концентраций оксидов азота.

Следовательно, примесью, которую практически возможно зарегистрировать на основании спектрометрических измерений в инфракрасном диапазоне длин волн в области прозрачности атмосферы, является озон. При этом анализ увеличения поглощения необходимо проводить в диапазоне от 1000 до 1080 см-1.

Практическая реализация способа возможна только в том случае, если количество образующегося озона достаточно для его идентификации.

В качестве примера был проведен анализ аварии, которая произошла на атомной подводной лодке при перезарядке ядерного реактора на судоремонтном заводе в бухте Чажма [13]. Общая активность продуктов деления, образовавшихся в активной зоне, оценивается величиной 1019 Бк (270 МКи). Активность 137Cs составляла 2·109 Бк (0,056 Ки). Кроме того, в результате разрушения и плавления корпуса конструкций в атмосферу был выброшен 60Co. Оценка общего выхода данного радионуклида изменяется от 20 до 500 Ки.

Отметим, что в радиолиз воздуха вносят вклад не только радионуклиды, образовавшие радиоактивный след, но и радионуклиды йода и благородные газы. Согласно существующим оценкам суммарная активность радиоизотопов йода, выброшенных из активной зоны реактора, должна на два порядка превышать активность 137Cs [14]. Примерно такую же активность могут иметь радиоактивные благородные газы, включая радионуклиды ксенона и криптона [14].

В целом можно считать, что общая активность радионуклидов в облаке выброса составляла не менее нескольких десятков кюри.

Мощность дозы гамма-излучения dP в некоторой точке пространства (Xp, yp, zp), обусловленная элементом облака объемом dV, расположенным в точке (x, y, z), будет определяться соотношением для распределения уровней радиации от изотропного источника в бесконечной воздушной среде [15]:

где r - расстояние между точками (xp, yp, zp) и (x, у, z);

At - суммарная активность радионуклидов в облаке на время t, Ки;

Ct - концентрация примеси в облаке выброса на время t после его образования, кг/м3;

M - масса радиоактивного аэрозоля, кг;

nγ - квантовый выход, отн. ед.;

E - энергия квантов гамма-излучения, МэВ;

µα - линейный коэффициент поглощения энергии излучения, м-1;

Kγ - коэффициент пропорциональности, зависящий от выбора единиц измерения мощности дозы гамма-излучения;

µ - линейный коэффициент рассеяния излучения, м-1;

Bd - дозовый фактор накопления, отн. ед.

Суммарная мощность дозы гамма-излучения будет обуславливаться всеми элементами облака V:

Срабатывание спектрорадиометра зависит от интегральной концентрации газовой примеси CΣ на трассе зондирования. Определить эту величину возможно, если точки (xp, yp, zp), в которых проводится расчет уровней радиации, расположить вдоль оси поля зрения спектрорадиометра l. Соотношение для расчета интегральной концентрации, например O3, будет иметь вид [16]:

Результаты расчета распределения уровней радиации вдоль оси поля зрения, проходящей через центр радиоактивного облака, приведены на фиг.5.

Полученная зависимость позволила оценить с использованием (5) интегральную концентрацию продуктов радиолиза в поле зрения спектрорадиометра. Согласно проведенным расчетам CΣ озона вдоль рассматриваемой трассы зондирования должна составлять примерно 2,5 мг/м2.

Отметим, что максимальная чувствительность современных спектрорадиометров составляет величину, равную нескольким мг/м2 [16]. Следовательно, в настоящее время существует практическая возможность идентификации радиоактивных облаков по продуктам радиолиза компонент атмосферы пассивными спектрорадиометрами.

Таким образом, с учетом вышеизложенных обобщений предлагается способ обнаружения радиоактивного загрязнения приземного слоя атмосферы, заключающийся в определении появления в атмосфере контролируемого района примеси радиоактивных газов и радиоактивного аэрозоля, отличающийся тем, что наличие радиоактивных веществ устанавливается по увеличению содержания в локальных областях приземного слоя атмосферы озона путем определения в инфракрасной области длин волн электромагнитного излучения спектра фонового излучения атмосферы, приходящего под различными углами, и установления увеличения поглощения излучения в интервале 1000-1080 см-1.

Список использованных источников

1. Садовников Р.Н., Федосеев В.М. Сравнительная оценка опасности радионуклидов, поступающих в организм человека с продуктами питания // Экологические приборы и системы. - 2004. - №6. - С.46-49.

2. Дозиметрический и радиометрический контроль при работе с радиоактивными веществами и источниками ионизирующих излучений. Методическое руководство. T.1. Организация и методы контроля. Под ред. В.И. Гришмановского. - М.: Атомиздат, 1980. - 272 с.

3. Воробьев A.M. Методы определения радиоактивных веществ в воздухе. - М.: Медицина, 1974. - 136 с.

4. Романов В.П. Дозиметрист АЭС. М: Энергоатомиздат, 1986. - 153 с.

5. Голубев Б.В. Дозиметрия и защита от ионизирующих излучений. М: Энергоатомиздат, 1986. - 203 с.

6. Фильтры АФА. Каталог. - М.: ЦНИИатомформ, 1987. - 12 с.

7. Рузер Л.С. Радиоактивные аэрозоли. М.: Издательство комитета стандартов, мер и измерительных приборов при Совете Министров СССР, 1968. - 53 с.

8. Радиационный контроль. Оборудование и услуги: Каталог научно-производст. предпр. «ДОЗА». М., 1999. - 192 с.

9. Радиационный контроль. Оборудование и услуги: Каталог научно-производст. предпр. «ДОЗА». М., 2005. - 255 с.

10. Шаров Ю.Н., Шубин Н.В. Дозиметрия и радиационная безопасность. - М.: Энергоатомиздат, 1991. - 280 с.

11. Дмитриев М.Т., Юрасова О.И., Королева Н.А. Кинетика радиационно-химических реакций окисления азота и образования озона при больших объемах // Журнал прикладной химии. - 1970. - Т.XLIII. - №9. - С.1929-1933.

12. Атмосфера. Справочник. - Ленинград: Гидрометеоиздат, 1991. - 510 с.

13. Сойфер В.Н., Горячев В.А., Сергеев А.Ф. и др. Эволюция радиоактивного загрязнения донных отложений в зоне аварии на атомной подводной лодке в 1985 г. в бухте Чажма Японского моря // Метеорология и гидрология - 1999. - №1. - С.48-63.

14. Гришмановский В.И., Козлов В.Ф., Лузанова Л.М. и др. Оценка радиационных последствий возможных гипотетических аварий на АЭС с ВВЭР // Атомная энергия. - 1989. - Т.67. - Вып.4. - С.262-266.

15. Израэль Ю.А., Стукин Е.Д. Гамма-излучение радиоактивных выпадений. - М.: Атомиздат, 1967. - 224 с.

16. Морозов А.Н., Светличный С.И. Основы Фурье-спектрорадиометрии. - М.: Наука, 2006. - 275 с.

Похожие патенты RU2547002C1

название год авторы номер документа
СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ЗАГРЯЗНЕНИЯ РАДИОНУКЛИДАМИ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ В СЛЕДЕ РАДИОАКТИВНОГО ВЫБРОСА РАДИАЦИОННО-ОПАСНЫХ ПРЕДПРИЯТИЙ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Елохин Александр Прокопьевич
  • Рау Дмитрий Федорович
  • Пархома Павел Александрович
  • Жилина Мария Владимировна
RU2388018C1
СПОСОБ ОБНАРУЖЕНИЯ РАДИАЦИОННОГО ЗАГРЯЗНЕНИЯ 2013
  • Боярчук Кирилл Александрович
  • Карелин Александр Витальевич
  • Туманов Михаил Владимирович
RU2561305C2
СПОСОБ ОБНАРУЖЕНИЯ ИСТОЧНИКОВ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ (ВАРИАНТЫ) 2002
  • Протасевич Е.Т.
  • Протасевич А.Е.
  • Рыжкин С.А.
RU2230339C2
Способ определения дисперсного состава альфа-активных примесей при аварийном выбросе в атмосферу 2021
  • Сафронова Анна Владимировна
  • Байдуков Александр Кузьмич
  • Кузнецова Юлия Алексеевна
  • Анистратенко Сергей Сергеевич
  • Шабунин Сергей Иванович
  • Малов Владимир Александрович
RU2777752C1
СПОСОБ ВЫЯВЛЕНИЯ РАДИАЦИОННОЙ ОБСТАНОВКИ ПОСЛЕ ВЫБРОСА РАДИОАКТИВНЫХ ВЕЩЕСТВ В АТМОСФЕРУ 2011
  • Садовников Роман Николаевич
  • Бойко Андрей Юрьевич
  • Кухоткин Сергей Владимирович
  • Федосеев Василий Михайлович
  • Шлыгин Петр Евгеньевич
RU2478988C1
СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ РАДИОНУКЛИДОВ В ВОЗДУШНОМ ВЫБРОСЕ РАДИАЦИОННО-ОПАСНЫХ ПРЕДПРИЯТИЙ И УСТРОЙСТВО ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Елохин Александр Прокопьевич
  • Рау Дмитрий Федорович
  • Пархома Павел Александрович
RU2299451C1
СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ ПО ГАММА-ИЗЛУЧЕНИЮ ЗАГРЯЗНЁННОСТИ ОКРУЖАЮЩЕЙ СРЕДЫ, ВЫЗВАННОЙ РАДИОАКТИВНЫМ ВЫБРОСОМ РАДИАЦИОННО-ОПАСНЫХ ПРЕДПРИЯТИЙ 2015
  • Попов Вячеслав Павлович
RU2596183C1
СПОСОБ ЛАЗЕРНОГО ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ НЕЙТРОННЫХ ПОТОКОВ НА РАДИАЦИОННО ОПАСНЫХ ОБЪЕКТАХ 1999
  • Перевозчиков А.Н.
  • Мацюк Г.В.
  • Палатов Ю.А.
  • Шмелев А.Е.
RU2180126C2
СПОСОБ ВЫЯВЛЕНИЯ ФАКТИЧЕСКОЙ РАДИАЦИОННОЙ ОБСТАНОВКИ ДИСТАНЦИОННЫМ МЕТОДОМ С ВЕРТИКАЛЬНОЙ ТРАССЫ СКАНИРОВАНИЯ 2010
  • Соловых Сергей Николаевич
  • Ткачук Юлиан Вячеславович
RU2449318C1
Автоматизированный радиационный мониторинг окружающей среды в районе объекта, содержащего радиоактивные вещества 1990
  • Петров Юрий Витальевич
  • Рымаренко Александр Иосифович
  • Фрунзе Владимир Владимирович
SU1716457A1

Иллюстрации к изобретению RU 2 547 002 C1

Реферат патента 2015 года СПОСОБ ОБНАРУЖЕНИЯ РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ ПРИЗЕМНОГО СЛОЯ АТМОСФЕРЫ

Изобретение относится к области мониторинга радиационной обстановки и установления факта появления в атмосфере облака радиоактивных веществ. С помощью спектрорадиометра инфракрасного излучения определение присутствия в воздухе радиоактивных газов и аэрозолей осуществляется путем установления повышения в воздухе содержания озона, образующегося из кислорода под действием ионизирующих излучений радионуклидов. Изобретение позволяет снизить дозовые нагрузки за счет принятия защитных мер, обеспечивающих исключение ингаляционного поступления радионуклидов внутрь организмов, до подхода радиоактивного облака в район расположения людей. 5 ил.

Формула изобретения RU 2 547 002 C1

Способ обнаружения радиоактивного загрязнения приземного слоя атмосферы, заключающийся в определении появления в атмосфере контролируемого района примеси радиоактивных газов и радиоактивного аэрозоля, отличающийся тем, что наличие радиоактивных веществ устанавливается по увеличению содержания в локальных областях приземного слоя атмосферы озона путем определения в инфракрасной области длин волн электромагнитного излучения спектра фонового излучения атмосферы, приходящего под различными углами, и установления увеличения поглощения излучения в интервале 1000-1080 см-1.

Документы, цитированные в отчете о поиске Патент 2015 года RU2547002C1

ЛИДАРНЫЙ СПОСОБ ДИСТАНЦИОННОГО МОНИТОРИНГА РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ МЕСТНОСТИ 2006
  • Манец Анатолий Иванович
  • Тюрин Дмитрий Владимирович
  • Мацюк Григорий Владимирович
  • Бойко Андрей Юрьевич
  • Мозжилкин Александр Владимирович
RU2377597C2
Устройство для навивания арматурной проволоки при изготовлении предварительно напряженных железобетонных элементов 1952
  • Фоломеев А.А.
  • Шворин В.М.
SU114532A1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ АВАРИЙНЫХ ВЫБРОСАХ НА АЭС 2012
  • Бондур Валерий Григорьевич
  • Давыдов Вячеслав Федорович
  • Макаров Виктор Александрович
  • Пулинец Сергей Александрович
RU2497151C1
СПОСОБ ОБНАРУЖЕНИЯ РАДИОАКТИВНЫХ ЗАГРЯЗНЕНИЙ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ, В ВОДНОМ И ПРИДОННОМ СЛОЯХ ГИДРОСФЕРЫ 2001
  • Ларкина В.И.
  • Ларкин В.Г.
  • Ружин Ю.Я.
  • Сергеева Н.Г.
  • Сенин Б.В.
RU2207597C2
СПОСОБ ВЫЯВЛЕНИЯ РАДИАЦИОННОЙ ОБСТАНОВКИ ПОСЛЕ ВЫБРОСА РАДИОАКТИВНЫХ ВЕЩЕСТВ В АТМОСФЕРУ 2011
  • Садовников Роман Николаевич
  • Бойко Андрей Юрьевич
  • Кухоткин Сергей Владимирович
  • Федосеев Василий Михайлович
  • Шлыгин Петр Евгеньевич
RU2478988C1
US 7566881 B2, 28.07.2009
US 3926560 A, 16.12.1975

RU 2 547 002 C1

Авторы

Садовников Роман Николаевич

Бойко Андрей Юрьевич

Шлыгин Петр Евгеньевич

Даты

2015-04-10Публикация

2013-12-05Подача