ОПТИЧЕСКИЙ МНОГОСЛОЙНЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР Российский патент 2015 года по МПК G02B5/28 B82Y20/00 

Описание патента на изобретение RU2547898C1

Изобретение относится к волоконно-оптической технике и может быть использовано в оптических устройствах связи и спектрометрах комбинационного рассеяния света.

Известен оптический многослойный фильтр [Аналог: Гончаров Ф.Н., Лапшин Б.А., Петраков В.А., Политыкин Р.В., Шмидт А.А. Оптический многослойный фильтр. Патент РФ №2316029, 27.01.2008, МПК G02B 5/28]. Фильтр содержит чередующиеся диэлектрические слои из материалов с высоким и низким показателями преломления. В нем все диэлектрические слои с высоким показателем преломления (nв) выполнены из одного материала, а все слои с низким показателем преломления (nн) выполнены из второго материала. Три диэлектрических слоя фильтра имеют оптическую толщину λ/2, где λ - средняя длина волны в полосе пропускания. Они являются резонаторами фильтра. Остальные диэлектрические слои имеют оптическую толщину λ/4. Они образуют многослойные диэлектрические зеркала, отделяющие резонаторы друг от друга и от внешнего пространства. Количество слоев в наружных и внутренних зеркалах определяется предложенными математическими формулами, зависящими только от двух величин - от отношения показателей преломления двух используемых материалов и от относительной ширины полосы пропускания фильтра.

Недостатком известного аналога являются низкие селективные свойства, выражающиеся в слабом ослаблении проходящего света за пределами полосы пропускания и малой крутизне склонов самой полосы пропускания. Этот недостаток обусловлен малым числом резонаторов (полуволновых слоев), равным трем. Причем увеличение числа резонаторов в аналоге не предусмотрено согласно формуле изобретения. Другим недостатком аналога является принципиальная невозможность реализации фильтра с точно заданной шириной полосы пропускания света и точно заданной неравномерностью коэффициента прохождения в этой полосе, так как количество слоев в наружных и внутренних зеркалах фильтра, определяющих эти характеристики, не может быть дробным.

Наиболее близким аналогом заявляемого изобретения является многорезонаторный фильтр [Прототип: Н.A. Macleod. Thin-film optical filters. 4-th ed., Tucson: CRC Press, © 2010 Taylor and Francis Group, p.356-357, Figure 8.22]. Фильтр содержит чередующиеся диэлектрические слои из материалов с высоким (nв=2.35) и низким (nн=1.35) показателями преломления, расположенные между двумя стеклянными пластинами (nс=1.52). Все резонансные слои выполнены из материала с высоким показателем преломления (nв) и имеют оптическую толщину λ/2, а все слои диэлектрических зеркал имеют оптическую толщину λ/4. Все зеркала, расположенные между резонансными полуволновыми слоями, одинаковы. Остальные два зеркала (наружные) имеют меньшее число слоев, чем внутренние зеркала. Они также одинаковы.

Недостатком многорезонаторного фильтра является принципиальная невозможность реализации фильтра как с точно заданной шириной полосы пропускания, так и с точно заданной неравномерностью коэффициента прохождения света в этой полосе. Этот недостаток связан с тем, что отражательные способности всех внутренних зеркал одинаковы. Кроме того, для устранения этого недостатка требуется плавная настройка отражательной способности каждого из зеркал, но, меняя только количество слоев в зеркале, этого достичь невозможно.

Для выравнивания неравномерности коэффициента прохождения света в полосе пропускания многорезонаторного фильтра требуется, чтобы отражательная способность диэлектрических зеркал монотонно убывала от центра фильтра к его наружным границам. В фильтрах с меньшей неравномерностью отражательная способность зеркал убывает быстрее, чем в фильтрах с большей неравномерностью. В фильтрах с большей шириной полосы пропускания отражательная способность каждого зеркала меньше, чем отражательная способность соответствующего зеркала в фильтрах с меньшей шириной полосы пропускания.

Техническим результатом заявляемого изобретения является возможность реализации практически любой требуемой ширины полосы пропускания фильтра, а также возможность уменьшения неравномерности коэффициента прохождения света в этой полосе до любой заданной величины.

Технический результат достигается тем, что в оптическом многослойном полосно-пропускающем фильтре, содержащем полуволновые слои диэлектрика, являющиеся резонаторами, и прилегающие к ним многослойные диэлектрические зеркала, разделяющие один резонатор от другого, а также крайние резонаторы от окружающего пространства, все вместе образующие симметричную конструкцию, новым является то, что период i-го многослойного диэлектрического зеркала выражается конструкцией ABiCiBi, где A, Bi, Ci - три слоя диэлектриков с показателями преломления nA>nB>nC, одинаковыми во всех многослойных диэлектрических зеркалах, слой A во всех многослойных диэлектрических зеркалах имеет электрическую толщину θA=π/2, а электрические толщины θBi и θCi слоев Bi и Ci зависят от места расположения i-го многослойного диэлектрического зеркала и удовлетворяют условию t g 2 θ B i t g θ C i = 2 n B n C / ( n B 2 + n C 2 ) .

В случае, когда полуволновые слои диэлектрика имеют показатель преломления nC, каждое многослойное диэлектрическое зеркало характеризуются конструкцией (AB i C i B i ) m i A , где mi - число периодов в i-м многослойном диэлектрическом зеркале.

В случае, когда полуволновые слои диэлектрика имеют показатель преломления nA, оба наружные многослойные диэлектрические зеркала характеризуются конструкцией (AB 1 C 1 B 1 ) m 1 , где m1 - число периодов в первом (наружном) многослойном диэлектрическом зеркале, а i-е внутреннее многослойное диэлектрическое зеркало характеризуется конструкцией B i C i B i (AB i C i B i ) m i , где mi - число периодов в i-м многослойном диэлектрическом зеркале.

Заявляемый оптический многослойный полосно-пропускающий фильтр отличается от прототипа тем, что период i-го многослойного диэлектрического зеркала выражается конструкцией ABiCiBi, где A, Bi, Ci - три слоя диэлектриков с показателями преломления nA>nB>nC, одинаковыми во всех многослойных диэлектрических зеркалах, слой A во всех многослойных диэлектрических зеркалах имеет электрическую толщину θA=π/2, а электрические толщины θBi и θCi слоев диэлектриков Bi и Ci зависят от места расположения многослойного диэлектрического зеркала и удовлетворяют единому условию t g 2 θ B i t g θ C i = 2 n B n C / ( n B 2 + n C 2 ) .

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей техники и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Сущность изобретения поясняется чертежами и таблицами.

На фиг.1 изображена последовательность расположения слоев диэлектриков в Примере 1 выполнения заявляемого фильтра. На схеме резонансные полуволновые слои, имеющие показатель преломления nA, обозначены Ar. Слои диэлектрика с тем же показателем преломления, но входящие в состав многослойных диэлектрических зеркал, обозначены A.

На фиг.2 представлены амплитудно-частотные характеристики (АЧХ) фильтра, описанного в Примере 1. Сплошной линией изображена зависимость коэффициента прохождения света S21, а штриховой линией - коэффициента отражения S11 (Sij - компоненты матрицы рассеяния фильтра). Значения обоих коэффициентов выражены в децибелах, текущая частота f нормирована на центральную частоту полосы пропускания f0.

На фиг.3 изображена последовательность расположения слоев диэлектриков в Примере 2 выполнения заявляемого фильтра. На схеме резонансные полуволновые слои, имеющие показатель преломления nC, обозначены Cr. Слои диэлектрика с тем же показателем преломления, но входящие в состав многослойных диэлектрических зеркал, обозначены Ci (i=1, 2, 3).

На фиг.4 представлены АЧХ фильтра, описанного в Примере 2.

На фиг.5 изображена последовательность расположения слоев диэлектриков в Примере 3 выполнения заявляемого фильтра. На схеме резонансные полуволновые слои, имеющие показатель преломления nA, обозначены Ar. Слои диэлектрика с тем же показателем преломления, но входящие в состав многослойных диэлектрических зеркал, обозначены A.

На фиг.6 представлены АЧХ фильтра, описанного в Примере 3.

В табл.I приведены значения параметров слоев зеркал в Примере 1. Нумерация зеркал (i) производится в направлениях от наружных поверхностей конструкции к ее центру.

В табл.II приведены значения параметров слоев зеркал в Примере 2.

В табл.III приведены значения параметров слоев зеркал в Примере 3.

Пример 1 осуществления изобретения. Оптический многослойный полосно-пропускающий фильтр выполнен из трех диэлектрических материалов с показателями преломления nA, nB и nC. Он содержит 33 слоя, из которых 3 слоя (Ar) являются полуволновыми резонаторами с показателем преломления nA. Остальные слои образуют 4 многослойных зеркала, отделяющих один полуволновый резонатор от другого, а также крайние резонаторы от окружающего пространства. Порядок расположения слоев показан на фиг.1. Два наружных зеркала (i=1) содержат по 4 слоя, а два внутренних зеркала (i=2) содержат по 11 слоев. Параметры слоев фильтра приведены в Таблице 1. Содержащиеся в ней электрические толщины θBi и θCi слоев диэлектриков Bi и Ci удовлетворяют условию

Слои A и Ar выполняются из кремния (Si), слои B1 и B2 выполняются из моноокиси кремния (SiO), а слои C1 и C2 - из фторида натрия (NaF).

В Примере 1 достижение технического результата, а именно уменьшения неравномерности коэффициента прохождения света в полосе пропускания фильтра, подтверждается АЧХ фильтра, представленными на фиг.2. Относительная ширина полосы пропускания фильтра равна 5%. Все два максимума коэффициента отражения S11 в полосе пропускания расположены на уровне -15 дБ, а отвечающие им два минимума коэффициента прохождения S21 имеют глубину всего -0.14 дБ, что на порядок лучше, чем в прототипе.

Пример 2 осуществления изобретения. Оптический многослойный полосно-пропускающий фильтр выполнен из трех диэлектрических материалов с показателями преломления nA, nB и nC. Он содержит 67 слоев, из которых 5 слоев (Cr) являются полуволновыми резонаторами с показателем преломления nC. Остальные слои образуют 6 многослойных зеркал, отделяющих один полуволновый резонатор от другого, а также крайние резонаторы от окружающего пространства. Порядок расположения слоев показан на фиг.3. Два наружных зеркала (i=1) содержат по 5 слоев, а четыре внутренних зеркала (i=2, 3) содержат по 13 слоев. Параметры слоев фильтра приведены в Таблице II. Содержащиеся в ней электрические толщины θBi и θCi слоев диэлектриков Bi и Ci удовлетворяют условию (1). Все слои A выполняются из германия (Ge), слои B1, B2 и B3 выполняются из рутила (TiO2), а слои Cr, C1, C2 и C3 являются воздушными зазорами.

В Примере 2 достижение технического результата, а именно уменьшения неравномерности коэффициента прохождения света в полосе пропускания фильтра, подтверждается АЧХ фильтра, представленными на фиг.4. Относительная ширина полосы пропускания фильтра равна 1.4%. Все четыре максимума коэффициента отражения S11 в полосе пропускания расположены на уровне -15 дБ, а отвечающие им четыре минимума коэффициента прохождения S21 имеют глубину всего -0.14 дБ, что на порядок лучше, чем в прототипе.

Пример 3 осуществления изобретения. Оптический многослойный полосно-пропускающий фильтр выполнен из трех диэлектрических материалов с показателями преломления nA, nB и nC. Он содержит 57 слоев, из которых 5 слоев (Ar) являются полуволновыми резонаторами с показателем преломления nA. Остальные слои образуют 6 многослойных зеркал, отделяющих один полуволновый резонатор от другого, а также крайние резонаторы от окружающего пространства. Порядок расположения слоев показан на фиг.5. Два наружных зеркала (i=1) содержат по 4 слоя, а четыре внутренних зеркала (i=2, 3) содержат по 11 слоев. Параметры слоев зеркал приведены в Таблице III. Содержащиеся в ней электрические толщины θBi и θCi слоев диэлектриков Bi и Ci удовлетворяют условию (1). Слои Ar и A выполняются из кремния (Si), слои B1, B2 и B3 выполняются из моноокиси кремния (SiO), а слои C1, C2 и C3 из фторида натрия (NaF).

В Примере 3 достижение технического результата, а именно уменьшения неравномерности коэффициента прохождения света в полосе пропускания фильтра, подтверждается АЧХ фильтра, представленными на фиг.6. Относительная ширина полосы пропускания фильтра равна 5%. Все четыре максимума коэффициента отражения S11 в полосе пропускания расположены на уровне -15 дБ, а отвечающие им четыре минимума коэффициента прохождения S21 имеют глубину всего -0.14 дБ, что на порядок лучше, чем в прототипе.

Пример 1, Пример 2 и Пример 3 отличаются от известных конструкций фильтров тем, что период i-го многослойного диэлектрического зеркала выражается конструкцией ABiCiBi, где A, Bi, Ci - три слоя диэлектриков с показателями преломления nA>nB>nC,одинаковыми во всех многослойных диэлектрических зеркалах. Электрические толщины θBi и θCi слоев диэлектриков Bi и Ci зависят от места расположения многослойного диэлектрического зеркала и удовлетворяют единому условию (1).

Фильтры в Примере 1, Примере 2 и Примере 3 работают следующим образом. В каждом зеркале фильтра трехслойная структура BiCiBi эквивалентна для некоторой области частот вблизи центральной частоты f0 некоторому слою Di с электрической толщиной θDi=π/2 и показателем преломления nDi из диапазона nC<nDi<nB, если электрические толщины θBi и θCi слоев Bi и Ci удовлетворяют условию (1). При этом показатель преломления nDi будет тем выше, чем толще слой Bi. Эквивалентность трехслойной структуры BiCiBi одному слою Di означает, что используемые многослойные диэлектрические зеркала с периодом ABiCiBi эквивалентны стандартным многослойным диэлектрическим зеркалам с периодом ADi. Поэтому многослойные диэлектрические зеркала в Примере 1, Примере 2 и Примере 3 также как и стандартные зеркала, формируют достаточно широкие полосы заграждения фильтра. Свет в полосах заграждения испытывает сильное отражение.

Условие (1) для электрических толщин θBi и θCi получается в результате обнуления диагональных элементов матрицы передачи для симметричной трехслойной структуры BiCiBi на центральной частоте f0. Это условие является необходимым условием эквивалентности трехслойной структуры BiCiBi одному четвертьволновому слою Di, так как диагональные элементы матрицы передачи для любого четвертьволнового слоя всегда равны нулю.

Преимуществом многослойного зеркала, период которого выражается конструкцией ABiCiBi, является то, что его отражательную способность, определяемую контрастом показателей nA и nDi, можно плавно перестраивать, меняя одновременно θBi и θCi и соблюдая условие (1).

Полосу пропускания фильтра формируют слои Ar (Cr), являющиеся полуволновыми резонаторами. Она располагается в центре полосы заграждения. Ее ширина тем меньше, чем больше отражательная способность зеркал. Количество минимумов отражения света в полосе пропускания, называемое порядком фильтра, равно числу полуволновых слоев Ar (Cr). Глубина минимумов прохождения света, расположенных на частотах между минимумами отражения, сильно зависит от отражательной способности каждого из зеркал. Для выравнивания глубины всех минимумов прохождения требуется обеспечить определенные величины отражательных способностей зеркал. Отражательная способность зеркал в фильтре с выравненной неравномерностью коэффициента прохождения монотонно убывает по мере отдаленности зеркала от центра конструкции. При этом скорость убывания увеличивается с уменьшением глубины минимумов.

Грубая настройка полосы пропускания фильтра при заданных значениях показателей преломления nA, nB и nC осуществляется подбором числа периодов ni для каждого зеркала. Тонкая настройка осуществляется подбором электрической толщины θBi вместе с толщиной θCi, отвечающей условию (1).

Таким образом, преимуществом заявляемого оптического многослойного фильтра является то, что, используя в нем всего три материала с неодинаковыми показателями преломления, можно плавно перестраивать как ширину его полосы пропускания, так и величину неравномерности коэффициента прохождения света в этой полосе.

Таблица I i mi nA nB nC θA θBi θCi 1 1 3.479 2.315 1.321 π/2 0.6500 0.23465 2 2 3.479 2.315 1.321 π/2 0.3900 0.71625

Таблица II i mi nA nB nC θA θBi θCi 1 1 4.0 2.5 1.0 π/2 0.7730 0.0171 2 3 4.0 2.5 1.0 π/2 0.5525 0.3338 3 3 4.0 2.5 1.0 π/2 0.4895 0.4341

Таблица III i mi nA nB nC θA θBi θCi 1 1 3.479 2.315 1.321 π/2 0.7000 0.1474 2 2 3.479 2.315 1.321 π/2 0.4116 0.6337 3 2 3.479 2.315 1.321 π/2 0.2796 0.9423

Похожие патенты RU2547898C1

название год авторы номер документа
ОТРАЖАЮЩЕЕ ПОКРЫТИЕ 2004
  • Беляев Б.А.
  • Волошин А.С.
  • Лексиков А.А.
  • Шабанов В.Ф.
RU2256942C1
УЗКОПОЛОСНОЕ ФИЛЬТРУЮЩЕЕ ПОКРЫТИЕ 2006
  • Беляев Борис Афанасьевич
  • Волошин Александр Сергеевич
  • Лексиков Александр Александрович
  • Шабанов Василий Филиппович
RU2308062C1
ОПТИЧЕСКИЙ МНОГОСЛОЙНЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2013
  • Беляев Борис Афанасьевич
  • Тюрнев Владимир Вениаминович
  • Шабанов Василий Филлипович
RU2538078C1
МНОГОСЛОЙНЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2015
  • Беляев Борис Афанасьевич
  • Тюрнев Владимир Вениаминович
  • Галеев Ринат Гайсеевич
RU2579816C1
ОПТИЧЕСКИЙ МНОГОСЛОЙНЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2014
  • Беляев Борис Афанасьевич
  • Тюрнев Владимир Вениаминович
  • Шабанов Василий Филлипович
RU2552127C1
ОПТИЧЕСКИЙ МНОГОСЛОЙНЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2019
  • Беляев Борис Афанасьевич
  • Тюрнев Владимир Вениаминович
  • Лексиков Андрей Александрович
RU2713566C1
МНОГОСЛОЙНЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2015
  • Беляев Борис Афанасьевич
  • Тюрнев Владимир Вениаминович
RU2619137C2
ПЕРЕСТРАИВАЕМЫЙ ВОЛОКОННЫЙ ДВУХЗЕРКАЛЬНЫЙ ОТРАЖАТЕЛЬНЫЙ ИНТЕРФЕРОМЕТР 2017
  • Бабин Сергей Алексеевич
  • Терентьев Вадим Станиславович
  • Симонов Виктор Александрович
RU2679474C1
Перестраиваемый волоконный отражательный интерферометр 2019
  • Бабин Сергей Алексеевич
  • Косцов Эдуард Геннадьевич
  • Коняшкин Валериан Васильевич
  • Терентьев Вадим Станиславович
  • Симонов Виктор Александрович
RU2720264C1
Диэлектрический узкополосный интерференционный фильтр 1989
  • Михайлов Вячеслав Николаевич
SU1748111A1

Иллюстрации к изобретению RU 2 547 898 C1

Реферат патента 2015 года ОПТИЧЕСКИЙ МНОГОСЛОЙНЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР

Фильтр может быть использован в оптических устройствах связи и спектрометрах комбинационного рассеяния света. Фильтр содержит полуволновые слои диэлектрика, являющиеся резонаторами, и прилегающие к ним многослойные диэлектрические зеркала, разделяющие один резонатор от другого и от окружающего пространства, все вместе образующие симметричную конструкцию. Период i-го многослойного диэлектрического зеркала выражается конструкцией ABiCiBi, где A, Bi, Ci - три слоя диэлектриков с показателями преломления nA>nB>nC, одинаковыми во всех многослойных диэлектрических зеркалах. Слой A во всех многослойных диэлектрических зеркалах имеет электрическую толщину θA=π/2, а электрические толщины θBi и θCi слоев диэлектриков Bi и Ci зависят от места расположения многослойного диэлектрического зеркала и удовлетворяют единому условию t g 2 θ B i t g θ C i = 2 n B n C / ( n B 2 + n C 2 ) . Технический результат - возможность реализации практически любой требуемой ширины полосы пропускания фильтра и уменьшение неравномерности коэффициента прохождения света в этой полосе. 2 з.п. ф-лы, 6 ил., 3 табл.

Формула изобретения RU 2 547 898 C1

1. Оптический многослойный полосно-пропускающий фильтр, содержащий полуволновые слои диэлектрика, являющиеся резонаторами, и прилегающие к ним многослойные диэлектрические зеркала, разделяющие один резонатор от другого и от окружающего пространства, все вместе образующие симметричную конструкцию, отличающийся тем, что период i-го многослойного диэлектрического зеркала выражается конструкцией ABiCiBi, где A, Bi, Ci - три слоя диэлектриков с показателями преломления nA>nB>nC, одинаковыми во всех многослойных диэлектрических зеркалах, слой A во всех многослойных диэлектрических зеркалах имеет электрическую толщину θA=π/2, а электрические толщины θBi и θCi слоев диэлектриков Bi и Ci зависят от места расположения многослойного диэлектрического зеркала и удовлетворяют единому условию t g 2 θ B i t g θ C i = 2 n B n C / ( n B 2 + n C 2 ) .

2. Оптический многослойный полосно-пропускающий фильтр по п.1, отличающийся тем, что все полуволновые слои диэлектрика имеют показатель преломления nC, а каждое многослойное диэлектрическое зеркало характеризуется конструкцией (AB i C i B i ) m i A , где mi - число периодов в i-м многослойном диэлектрическом зеркале.

3. Оптический многослойный полосно-пропускающий фильтр по п.1, отличающийся тем, что полуволновые слои диэлектрика имеют показатель преломления nA, оба наружных многослойных диэлектрических зеркала характеризуются последовательностью (AB 1 C 1 B 1 ) m 1 , где m1 - число периодов в первом (наружном) многослойном диэлектрическом зеркале, a i-e внутреннее многослойное диэлектрическое зеркало характеризуется конструкцией B i C i B i (AB i C i B i ) m i , где mi - число периодов в i-м многослойном диэлектрическом зеркале.

Документы, цитированные в отчете о поиске Патент 2015 года RU2547898C1

Н.A
Macleod
Thin-film optical filters
Fourth Edition, CRC Press, Taylor & Francis Group, 2010, p.356-357, fig
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
ОПТИЧЕСКИЙ МНОГОСЛОЙНЫЙ ФИЛЬТР 2006
  • Гончаров Александр Николаевич
  • Лапшин Борис Алексеевич
  • Петраков Валерий Андреевич
  • Политыкин Роман Валерьевич
  • Шмидт Аркадий Александрович
RU2316029C1
УЗКОПОЛОСНОЕ ФИЛЬТРУЮЩЕЕ ПОКРЫТИЕ 2006
  • Беляев Борис Афанасьевич
  • Волошин Александр Сергеевич
  • Лексиков Александр Александрович
  • Шабанов Василий Филиппович
RU2308062C1
Самораскрывающаяся резьбонарезная головка 1935
  • Маркин В.А.
SU49736A1
US 2007081247 A1, 12.04.2007

RU 2 547 898 C1

Авторы

Беляев Борис Афанасьевич

Тюрнев Владимир Вениаминович

Шабанов Василий Филлипович

Даты

2015-04-10Публикация

2013-11-18Подача