СПОСОБ РЕГУЛИРОВАНИЯ УСЛОВИЙ ПРОЦЕССА БУРЕНИЯ СКВАЖИНЫ И КОМПОНОВКА НИЗА БУРОВОЙ КОЛОННЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2015 года по МПК E21B44/00 

Описание патента на изобретение RU2550117C1

Изобретение относится к бурению скважин и может найти применение при регулировании условий бурения.

Известен способ адаптивного регулирования условий бурения скважин (положительное решение по заявке №2012111599/03), в котором технологические параметры жестко согласуют с геологическими условиями забоя, определяемые твердостью горной породы, по алгоритму. В способе приводится алгоритм, увязывающий значения технологических параметров между собой, но не указываются обратные связи взаимодействия этих параметров с внешними дестабилизирующими источниками, что является недостатком способа.

Известен более близкий способ регулирования технологических параметров бурения скважин и компоновка низа буровой колонны для осуществления способа (пат. РФ №2465452, МПК Е21В 44/00, опубл. 27.10.2012. Бюл. №30), в котором регулирование параметров бурения скважин осуществляют непосредственно на забое скважины: дифференциального давления установкой над долотом винтового устройства, плотности расхода промывочной жидкости установкой над ним сепаратора, а скорость бурения оптимизируют расчетом технологических параметров процесса бурения: число оборотов долота, нагрузка на долото, промывочной жидкости возведением в степени, определяемые из математических выражений. Недостатком способа является то, что в прототипе отсутствуют в явной форме обратные связи, межканальные взаимные связи и их источники, являющиеся основой целенаправленного оптимального регулирования условиями процесса бурения.

Известна компоновка низа буровой колонны (пат. РФ №2465452, МПК Е21В 44/00), которая включает винтовое устройство, сепаратор, имеющие с другими элементами компоновки одинаковый диаметр.

Недостатком этой компоновки является: во-первых, невозможность регулирования числом оборотов долота в зависимости от геологических условий, определяемых твердостью горной породой забоя; во-вторых, невозможность регулирования и поддержания соотношения расходуемых на забое механической и гидравлической мощностей.

Будем рассматривать физическую сущность углубления забоя как единовременную реализацию двух этапов: первый - разрушение горной породы забоя в результате вращательного движения долота, находящегося под нагрузкой, путем расходования механической мощности; второй - очистку забоя от разрушенной породы путем расходования гидравлической мощности. Следовательно, значение расходуемых мощностей является количественной характеристикой этих этапов, а их соотношение - необходимой и достаточной характеристикой всего процесса углубления, причем это соотношение зависит от забойных условий. Действительно, превышение механической мощности над необходимой величиной гидравлической мощности приводит к недоочистке забоя от разрушенной породы и повторному ее перемыванию; и наоборот, превышение гидравлической мощности определенного значения над необходимой величиной механической мощности приводит к увеличению дифференциального давления на забое и, следовательно, к ухудшению условий разрушения горной породы забоя. Как первое, так и второе приводит к ухудшению условий углубления и снижению механической скорости бурения, т.е. уход от оптимума. Регулирование и поддержание этого соотношения на необходимом и достаточном уровне и недопущение дополнительного расходования мощностей в зависимости от забойных условий возможно только косвенным путем с помощью алгоритма, обеспечивающего гармоничное сочетание значений технологических параметров с геологическими условиями забоя, определяемых твердостью горной породы; в-третьих, невозможность регулирования расходом промывочной жидкости после сепарации, минующей забой, что влияет на изменения значения дифференциального давления забоя, а следовательно, на условия разрушения породы.

Задачей изобретения является: оптимизация и стабилизация условий бурения путем определения источников обратных связей и межканальных взаимных связей, возникающих при взаимодействии долота с горной породой забоя, и использование этих связей для регулирования числом оборотов долота, стабилизируя тем самым работу забойного гидродвигателя; регулирование и поддержание соотношения механической и гидравлической мощностей, соответствующих наилучшим условиям разрушения горной породы забоя и очистки его от разрушенной породы, что возможно косвенным способом с помощью алгоритма, обеспечивающего гармоничное сочетание значений технологических параметров и геологических забойных условий, определяемых твердостью горной породы; регулирование расходом промывочной жидкости, минующей забой после сепарации, стабилизируя очистку забоя от разрушенной породы и условий разрушения породы.

Поставленная задача достигается тем, что в известном способе регулирование параметров бурения скважин осуществляют непосредственно на забое скважины: дифференциального давления установкой над долотом винтового устройства, плотности промывочной жидкости установкой над ним сепаратора, причем все элементы имеют одинаковый диаметр, скорость бурения оптимизируют расчетом технологических параметров процесса бурения: числом оборотов долота, нагрузки на долото, расход промывочной жидкости возведением в степени, определяемые из математических выражений, согласно предлагаемому изобретению регулирование процессом бурения осуществляют путем представления долота как трехканального преобразователя механической и гидравлической мощностей расходуемых на забое в углубление (поступательное движение), причем канал числа оборотов долота и канал нагрузки на долото совместно реализуют первый этап процесса углубления - разрушение горной породы забоя путем расхода механической мощности, а канал расхода промывочной жидкости реализует второй этап углубления - очистку забоя от разрушенной породы путем расхода гидравлической мощности, при этом оба этапа осуществляются в единовременном взаимодействии, являющимся, в свою очередь, источником канальных обратных связей и межканальных взаимных связей, которые используются для целенаправленного регулирования: числом оборотов долота путем установки над долотом или в единой конструкции с гидродвигателем редуктора (аналогично автоматической коробке переключения передач автомобиля), стабилизирующего работу гидродвигателя, обладающего ограниченным моментом (мощностью) при изменении забойных условий, определяемых твердостью горной породы, при этом сохраняя другие элементы компановки низа буровой колонны; соотношение мощностей, расходуемых на забое, определяется с помощью алгоритма, обеспечивающего гармоничное сочетание значений технологических параметров с геологическими забойными условиями, определяемыми твердостью горной породы

где G - нагрузка на долото;

Q ' = Q n - приведенный к одному обороту долота расход промывочной жидкости;

A ¯ = 1 A = k S k 0 ( γ з . п . γ ж ) V 1 з ( γ п γ ж ) - коэффициент,

здесь V - объем разрушенной породы за единичный акт воздействия зубка на забой;

γп - удельный вес разрушенной породы;

γз.п. - удельный вес промывочной жидкости в затрубном пространстве;

γж - удельный вес промывочной жидкости, закачиваемой в скважину;

k = 1 ϑ о с е д ϑ ж - коэффициент седиментации;

Sk0 - площадь поверхности одного зубка шарошки, контактируемого с поверхностью забоя;

ϑосед - скорость оседания частиц в потоке промывочной жидкости;

ϑж - скорость потока промывочной жидкости в затрубном пространстве,

а также расходом промывочной жидкости, минующей забой после сепарации, путем установки на сепараторе перепускного клапана, регулирующего расход промывочной жидкости, минующей забой, в зависимости от дифференциального давления на забое, стабилизируя очистку забоя от разрушенной породы, дифференциальное забойное давление.

На фиг.1 показана структурная схема долота как трехканального преобразователя механической и гидравлической мощностей в углубление (поступательное движение), на котором:

1 - первый канал числа оборотов, осуществляющий при вращении разрушение горной породы забоя вооружением (зубьями), находясь под нагрузкой, обеспечивающей каналом нагрузки на долото 2. При разрушительном вращении долото испытывает обратное воздействие разрушаемой горной породы, которое определяет ее деформироваемость 1а, являясь источником обратной связи (фиг.1, А), являющейся, в свою очередь, причиной принятия мер по изменению прикладываемого момента к долоту или изменяя число его оборотов. Канал имеет свою скоростную по углублению компоненту, определяемую выражением:

где α = t э ф t к , t э ф = 2 ε 1 ϑ , t к = 1 n z i ;

ε - деформация горной породы, изменяющейся от 0,6 мм до 3,6 мм;

ϑ - скорость соударения зубка шарошки с поверхностью забоя;

n - число оборотов долота;

z - число зубков на периферийных венцах шарошек;

i = D d - передаточное число долота;

D - диаметр долота;

d - диаметр шарошек.

2 - второй канал нагрузки на долото, осуществляющий разрушение горной породы забоя совместно с каналом 1 путем нагружения (прижатия) вращающего долота к породе забоя. Канал испытывает противодействие не только от физико-механических свойств разрушаемой горной породы забоя, но и от чистоты его очистки 2в - обратная связь (фиг.1, В), поскольку в этом случае неоправданно расходуется дополнительная механическая мощность на повторное разрушение (перемалывание) породы, или гидравлической мощности при переочистке забоя, создавая ухудшающие условия разрушению породы через повышение дифференциального давления. Необходимое соотношение расходуемых мощностей можно осуществить косвенным образом с помощью алгоритма (1), обеспечивающего гармоничное (оптимальное) сочетание значений технологических параметров с геологическими забойными условиями, определяемыми твердостью горной породы. Скоростная компонента по углублению этого канала имеет вид:

где β = 1 + lg N м N г ;

Nм=nGD[lπ(k1+k2)] - расход на забое механической мощности;

N г = ρ Q н 2 / 2 μ 0 2 f 0 2 - расход на забое гидравлической мощности;

n - число оборотов долота; G - нагрузка на долото; D - диаметр долота; l - число шарошек долота; k1 - коэффициент, определяющий мощность вращения долота; k2 - коэффициент, определяющий мощность разрушения горной породы забоя; Qн - расход промывочной жидкости; ρ - плотность промывочной жидкости; f0 - суммарная площадь промывочных каналов долота; µ0=0,9 - металлокерамические насадки; µ0=-0,67 демонтируемый промывочный узел.

3 - третий канал расхода промывочной жидкости, определяющий очистку забоя от разрушенной породы. Величина расхода промывочной жидкости определяет не только качество очистки забоя по межканальной связи (фиг.1, N), но и значение динамической составляющей дифференциального давления 3с (фиг.1, С), которая, в свою очередь, влияет на условия разрушения горной породы по межканальной взаимной связи (фиг.1, N). Динамическая составляющая дифференциального давления определяет противодействие - обратную связь (фиг.1, 3с), влияя не только на режим разрушающих каналов 1 и 2 через качество очистки забоя, но и на условия разрушения породы. Все это в совокупности является причиной необходимости канального регулирования расходом промывочной жидкости с помощью перепускного клапана, устанавливаемого на сепараторе, или же по межканальной взаимной связи регулированием параметрами, осуществляющими разрушение горной породы, числом оборотов долота или нагрузкой на него. Скоростная компонента по углублению этого канала имеет вид:

где γ = 1 + lg P с к в P п л Q в х Q в ы х ; Рсквз.п.ст0 - давление скважины; Рз.п. - давление в затрубном пространстве; Рст - гидростатическое давление столба промывочной жидкости; Р0 - потери давления под долотом, обусловленные стесненностью забойного пространства; Рпл - пластовое давление в призабойной зоне; Qвх - расход промывочной жидкости на входе в скважину: Qвых - расход промывочной жидкости на выходе из скважины.

Необходимо отметить, что показатели степени α, β, γ являются функциями обратной связи геологического характера.

На фиг.2 приведена в общем виде схема компоновки низа буровой колонны, содержащей: 4 - долото, 5 - редуктор, 6 - винтовое устройство, 7 - лопасти винтового устройства, 8 - перепускной клапан, 9 - сепаратор, 10 - шламоуловитель, 11 - гидродвигатель, 12 - УБТ. Устройство 5, реализующее способ регулирования условиями процесса бурения, устанавливается между долотом 4 и винтовым устройством 6 и представляет собой редуктор, осуществляющий обмен (трансформацию) момента, прикладываемого гидродвигателем к долоту на его число оборотов, и наоборот, число оборотов в момент, в зависимости от забойных условий (аналогично автоматической коробке переключения передач автомобиля). Такой обмен позволяет снизить зависимость рабочих режимов гидродвигателя от забойных условий и тем самым не только стабилизировать условия работы гидродвигателя, но и снизить требования к расходу промывочной жидкости, определяемые режимами гидродвигателя, и тем самым повысить значимость очистки забоя от разрушенной породы. Необходимо отметить, что редуктор может быть выполнен в едином конструктивном исполнении с гидродвигателем.

На фиг.2 также приведено устройство 8, реализующее способ, которое устанавливается на сепараторе 9. Устройство представляет собой перепускной клапан, отрегулированный на определенную величину дифференциального давления. В процессе бурения при увеличении этого значения осуществляется сброс дополнительно увеличивающего расхода промывочной жидкости, минующей забой после ее сепарации, стабилизируя тем самым дифференциальное давление и условия разрушения горной породы забоя.

Похожие патенты RU2550117C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ПРЕОБРАЗОВАНИЯ СИСТЕМЫ "ДОЛОТО-ЗАБОЙ" 2016
  • Александров Станислав Сергеевич
RU2624472C1
СПОСОБ РЕГУЛИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ БУРЕНИЯ СКВАЖИН И КОМПОНОВКА НИЗА БУРИЛЬНОЙ КОЛОННЫ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2011
  • Александров Станислав Сергеевич
  • Александрова Светлана Михайловна
  • Дистанова Любовь Станиславовна
RU2465452C1
СПОСОБ РЕГУЛИРОВАНИЯ УСЛОВИЙ ПРОЦЕССА БУРЕНИЯ СКВАЖИН 2017
  • Александров Станислав Сергеевич
RU2642699C1
Способ регулирования условий процесса бурения скважин и устройство для его реализации 2016
  • Александров Станислав Сергеевич
  • Юмагулов Марат Гаязович
RU2648731C1
СПОСОБ АДАПТИВНОГО РЕГУЛИРОВАНИЯ УСЛОВИЙ БУРЕНИЯ СКВАЖИН И ДОЛОТО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Александров Станислав Сергеевич
  • Александрова Светлана Михайловна
  • Дистанова Любовь Станиславовна
RU2499887C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТОВ ТРЕНИЯ СИСТЕМЫ "ДОЛОТО-ЗАБОЙ" ПРИ БУРЕНИИ СКВАЖИНЫ 2015
  • Александров Станислав Сергеевич
  • Александрова Светлана Михайловна
  • Дистанова Любовь Михайловна
  • Петров Арсений Олегович
RU2604099C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ БУРЕНИЯ СКВАЖИН ЗАБОЙНЫМ ГИДРОДВИГАТЕЛЕМ 1994
  • Балденко Дмитрий Федорович
  • Балденко Федор Дмитриевич
  • Моцохейн Борис Иосифович
  • Шмидт Александр Петрович
RU2065956C1
СТРУЙНЫЙ АППАРАТ ДЛЯ ОЧИСТКИ СТВОЛА СКВАЖИНЫ 2011
  • Габбасов Тагир Мударисович
  • Катеев Рустем Ирекович
  • Ахмадишин Фарит Фоатович
  • Фаткуллин Рашад Хасанович
  • Газизов Вагиз Бустанович
RU2471958C1
СПОСОБ РАННЕГО РАСПОЗНАВАНИЯ ЗОН АНОМАЛЬНО ВЫСОКИХ ПЛАСТОВЫХ ДАВЛЕНИЙ (АВПД) В ПРОЦЕССЕ БУРЕНИЯ 2007
  • Струговец Евгений Трофимович
RU2342526C2
СПОСОБ И СИСТЕМА АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЯ И РЕГИСТРАЦИИ ТВЕРДОСТИ ГОРНОЙ ПОРОДЫ ЗАБОЯ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИНЫ 2013
  • Александров Станислав Сергеевич
  • Александрова Светлана Михайловна
  • Дистанова Любовь Станиславовна
  • Петров Арсений Олегович
RU2539089C1

Иллюстрации к изобретению RU 2 550 117 C1

Реферат патента 2015 года СПОСОБ РЕГУЛИРОВАНИЯ УСЛОВИЙ ПРОЦЕССА БУРЕНИЯ СКВАЖИНЫ И КОМПОНОВКА НИЗА БУРОВОЙ КОЛОННЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к бурению скважин и может найти применение при регулировании условий бурения. Техническим результатом является снижение зависимости режима работы забойного гидродвигателя от забойных условий и тем самым стабилизировать его. Способ включает алгоритм механической скорости, в котором технологические параметры процесса бурения: число оборотов долота, нагрузка на долото, расход промывочной жидкости, возводятся в степени, определяемые математическими выражениями, основанными на обобщенных параметрах, характеризующих взаимодействие долота с горной породой: время взаимодействия вооружения долота с породой; механическую и гидравлическую мощности, расходуемые на забое; дифференциальное давление на забое. При этом долото представляют трехканальным преобразователем механической и гидравлической мощностей в углубление, причем канал числа оборотов долота и канал нагрузки на долото совместно реализуют первый этап процесса углубления - разрушение горной породы забоя путем расхода механической мощности, а канал расхода промывочной жидкости реализует второй этап углубления - очистку забоя от разрушенной породы путем расхода гидравлической мощности, при этом оба этапа осуществляют в единовременном взаимодействии, являющимся, в свою очередь, источником канальных обратных связей и межканальных взаимных связей, определяющих основу регулирования условий процесса бурения. 2 н. и 4 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 550 117 C1

1. Способ регулирования условий процесса бурения скважины, включающий алгоритм механической скорости, в котором технологические параметры процесса бурения: число оборотов долота, нагрузка на долото, расход промывочной жидкости, возводятся в степени, определяемые математическими выражениями, основанными на обобщенных параметрах, характеризующих взаимодействие долота с горной породой: время взаимодействия вооружения долота с породой; механическую и гидравлическую мощности расходуемые на забое; дифференциальное давление на забое, отличающийся тем, что долото представляют трехканальным преобразователем механической и гидравлической мощностей в углубление, причем канал числа оборотов долота и канал нагрузки на долото совместно реализуют первый этап процесса углубления - разрушение горной породы забоя путем расхода механической мощности, а канал расхода промывочной жидкости реализует второй этап углубления - очистку забоя от разрушенной породы путем расхода гидравлической мощности, при этом оба этапа осуществляют в единовременном взаимодействии, являющимся, в свою очередь, источником канальных обратных связей и межканальных взаимных связей, определяющих основу регулирования условий процесса бурения.

2. Способ по п.1, отличающийся тем, что взаимодействие канала числа оборотов с горной породой забоя испытывает противодействие - обратную связь горной породы через ее твердость, следствием чего является необходимость регулирования параметрами этого канала: прикладываемого момента, числа оборотов или же нагрузкой на долото канала нагрузки на долото, реализуя таким образом межканальную взаимную связь.

3. Способ по п.1, отличающийся тем, что взаимодействие канала нагрузки на долото испытывает дополнительное противодействие - обратную связь через качество очистки забоя от разрушенной породы, следствием чего является неоправданный расход механической или гидравлической мощностей - отклонение от оптимального соотношения мощностей; оптимальное же соотношение, создающее наилучшие условия очистки забоя, реализуемое условиями алгоритма, обеспечивающего гармоничное сочетание значений технологических параметров с геологическими условиями забоя, определяемых твердостью горной породы.

4. Способ по п.1, отличающийся тем, что взаимодействие канала расхода промывочной жидкости с забоем испытывает противодействие - обратную связь через динамическую составляющую дифференциального давления, создаваемого расходом; дифференциальное давление, в свою очередь, изменяет условия разрушения породы забоя, следствием чего является необходимость регулирования величиной расхода этого канала или через межканальную взаимную связь регулировать параметрами, осуществляющими разрушение породы, т.е. числом оборотов или нагрузкой на долото.

5. Устройство регулирования условиями процесса бурения скважины и компоновка низа буровой колонны для его осуществления, включающее забойный гидродвигатель, долото, сепаратор, отличающееся тем, что непосредственно над долотом или в единой конструкции с гидродвигателем устанавливают редуктор, регулирующий число оборотов долота, при ограниченном моменте, развиваемым двигателем

6. Устройство по п.5, отличающееся тем, что на сепараторе устанавливают перепускной клапан, регулирующий расход промывочной жидкости, минующей забой.

Документы, цитированные в отчете о поиске Патент 2015 года RU2550117C1

СПОСОБ РЕГУЛИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ БУРЕНИЯ СКВАЖИН И КОМПОНОВКА НИЗА БУРИЛЬНОЙ КОЛОННЫ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2011
  • Александров Станислав Сергеевич
  • Александрова Светлана Михайловна
  • Дистанова Любовь Станиславовна
RU2465452C1
1967
SU417598A1
СПОСОБ АДАПТИВНОГО РЕГУЛИРОВАНИЯ УСЛОВИЙ БУРЕНИЯ СКВАЖИН И ДОЛОТО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Александров Станислав Сергеевич
  • Александрова Светлана Михайловна
  • Дистанова Любовь Станиславовна
RU2499887C1
WO 2009088825 A2, 16.07.2009

RU 2 550 117 C1

Авторы

Александров Станислав Сергеевич

Александрова Светлана Михайловна

Дистанова Любовь Станиславовна

Петров Арсений Олегович

Даты

2015-05-10Публикация

2013-12-24Подача