Изобретение относится к теплоэнергетике, в частности к области получения жидких топлив из твердого топлива для сжигания в топках котлов теплоэлектростанций.
В последние десятилетия активно разрабатываются технологии ожижения угля в качестве альтернативы углеводородному топливу. Одним из таких альтернативных топлив является водоугольное топливо (ВУТ).
Известно значительное количество способов получения ВУТ, например, SU 150100; SU 205201; SU 278944; SU 799800 и другие технические решения, изложенные в специальной технической литературе, например, «Водоугольное топливо» Круть А.А. - М.: Мысль, 2002 - 169 с. или «Физико-технические свойства водоугольного топлива» Мурко В.И. - Кемерово: ГУ КузГТУ, 2009 - 195 с.
Типовая технология приготовления ВУТ состоит из последовательности следующих операций. Уголь доставляется на открытую площадку. Фронтальный погрузчик подает уголь в приемный бункер двухвалковой дробилки, откуда размолотый до фракции 3…6 мм уголь направляется для дальнейшего помола в шаровую мельницу, в которую с помощью дозаторов подается техническая вода и присадка. Осуществляется мокрый помол угля с присадкой до фракции 0…300 мкм. Затем ВУТ через фильтр загружается в накопительные емкости, снабженные перемешивающими устройствами, ВУТ фракции 71…300 мкм возвращается в мельницу на домол. Готовое ВУТ фракции <70 мкм из накопительных емкостей перегружается в цистерны для транспортировки к месту сжигания.
Полученное известными способами ВУТ обычно характеризуется следующими параметрами:
- содержание угля: от 60 до 65%;
- вязкость: менее 1200 мПа/с;
- теплота сгорания (низшая): от 4000 до более 4700 ккал;
- зольность: от менее 6 до 10%;
- содержание серы: от менее 0,25 до 0,80%;
- температура плавления золы: менее 1250°С;
- частицы более 300 мкм: от менее 0,05 до 0,80%;
- частицы до 75 мкм: более 75%;
- содержание летучих: от менее 20 до более 30%.
Базовыми недостатками ВУТ являются затраты энергии при сжигании на фазовый переход суспензионной воды из жидкого состояния в парообразное, расслаивание суспензии в состоянии покоя, относительно высокая вязкость и значительная абразивность топлива. Опыт получения, хранения и сжигания ВУТ свидетельствует о следующих фактах:
- на каждую 10% влаги тратится 1% теплотворной способности угля;
- типовое ВУТ сохраняет стабильность при хранении (не расслаивается) в течение 1…2 суток, что требует использования специальных присадок-пластификаторов;
- при соотношении твердого к жидкому от Т:Ж=3:2 до Т:Ж=7:3 вязкость топлива увеличивается до значений 1500 мПа/с и более, что требует включать в технологическую схему сжигания ВУТ насосы второго подъема для создания избыточного давления топлива на форсунке более 0,5 МПа и применять подогреватели топлива для его подогрева перед сжиганием до температур более 80°С;
- без принятия специальных мер механические форсунки при сжигании типового ВУТ работают не более 40 часов из-за абразивного износа (из опыта Новосибирской ТЭЦ-5 в 1985-1995 гг.).
Известны жидкие угольные топлива (ЖУТ) и способы их получения, существенно снижающие базовые недостатки ВУТ.
Главным отличием ЖУТ от ВУТ являются получение и использование в качестве компонентов дисперсной системы продуктов термического передела угля.
Известен способ получения жидкого топлива из бурого угля путем его гидрогенизации с использованием отдельных продуктов реакции того же процесса (RU 2110553).
Недостатком известного способа является необходимость проведения гидрогенизации угля, которая ведется периодически в автоклаве, длительное время, с использованием катализаторов, ультразвуковой обработкой и при высоких давлении и температуре.
Наиболее близким по технической сущности к предложенному изобретению является известный способ переработки твердого топлива в жидкое по патенту RU 2446202 - прототип.
В способе-прототипе переработку твердого топлива в жидкое ведут путем эмульгирования твердой углеродосодержащей фракции с жидкой, причем в качестве твердой углеродсодержащей фракции используют измельченный до фракции 20 мкм полукокс, полученный в результате процесса полукоксования твердого топлива, а в качестве жидкой фракции используют жидкие продукты полукоксования того же топлива (жижка), кроме того, эмульгирование ведут до состояния золя с доведением твердой фракции до размера золовых частиц, а после эмульгирования фракцию золы выделяют из геля путем центрифгирования с получением отдельно геля и золы, а несконденсированные газы полукоксования используют путем сжигания для предварительной сушки твердого топлива. Нивелируя базовые недостатки ВУТ способ получения ЖУТ по прототипу обладает следующими недостатками.
Необходимость преобразования дисперсной системы «полукокс-жижка» по схеме «эмульсия-золь-гель» требует энергозатрат существенно больше, чем при получении ВУТ (10 кВт*час/т) за счет эксплуатации в течение долгого времени низкопроизводительных эмульгаторов и центрифуг осадительного типа для получения промышленных объемов ЖУТ.
При этом получаемая вязкость ЖУТ требует включения в топливную схему насосов второго подъема для создания избыточного давления топлива на выходе из сопла форсунки и применения дополнительных подогревателей топлива перед его сжиганием.
Поставлена задача - сократить эксплуатационные и капитальные затраты на получение жидкого угольного топлива, увеличить производительность переработки угля и снизить стоимость получаемого топлива. Поставленная задача решена следующим образом. Получение жидкого угольного топлива ведут путем суспендирования твердой углеродсодержащей фракции в жидкой в процессе совместного гомогенизирования продуктов пиролиза угля, причем в качестве твердой углеродсодержащей фракции используют измельченный до фракции 3-5 мкм полукокс, полученный в результате процесса полукоксования твердого топлива, а в качестве жидкой фракции используют смольную фракцию полукоксования того же топлива. Затем полученная суспензия в процессе гомогенизации эмульгируется с подсмольной водой, полученной в том же процессе полукоксования, или с суспензией измельченного до фракции 3-5 мкм твердого топлива в качестве дисперсной фазы и подсмольной воды в качестве дисперсной среды. Таким образом, по предложенному способу получают тонкодисперсную систему в виде эмульсии типа «масло/вода», в которой дисперсная фаза представляет собой суспензию полукокса и смольной фракции (угловатые микрочастицы полукокса в сферических микрокаплях смольной фракции), а дисперсная среда представляет собой химически активную подсмольную воду или твердотопливную суспензию. Кинематическая вязкость полученного топлива при 50°С равна 10-40 cSt.
Активные смолистые вещества дисперсной фазы эмульсии («масло») в виде широкого спектра циклических углеводородов, являющихся донорами водородного растворителя углеродсодержащей фазы полукокса и сильными поверхностно-активными веществами, будут в каждой микрокапле растворять микрочастицы полукокса, делая их форму более «скользкой» и менее абразивной. Активные химические соединения дисперсной среды эмульсии («вода» = подсмольная вода) в виде, например, ацетатаммония исполняют роль эмульгатора, приближая величину натяжения между фазой «масло» и фазой «вода» к критическому значению в 10-5 Дж/м2, когда происходит самопроизвольное образование эмульсии. Самостабилизация эмульсии происходит за счет наличия у такого эмульгатора сродства углеводородных радикалов к фазе «масло», сбалансированного сродством полярных групп к фазе «вода».
Оценки вязкости ЖУТ, например, по формуле (Марченко Р.Т. Физическая и коллоидная химия. - М.: Высшая школа, 1965 - с. 331-332):
где - вязкость дисперсионной среды; - объемная концентрация дисперсной фазы; А и В - константы, характеризующие форму частиц дисперсной фазы, показывают существенные различия значений абсолютной и кинетической вязкости ЖУТ-геля по прототипу и ЖУТ по изобретению. Так, например, для температуры 50°С оценки кинематической вязкости ЖУТ-геля находятся в диапазоне 50-100 cSt, для ЖУТ по изобретению - 10-20 cSt (дисперсная среда - подсмольная вода) и 20-40 cSt (дисперсная среда - угольная суспензия).
Способ получения ЖУТ по сравнению с прототипом обеспечивает следующие технические преимущества:
- снижает затраты на гомогенизацию дисперсной системы: по прототипу твердые частицы размером 20 мкм изменяют размеры на три порядка - до 1-100 нм, в изобретении частицы в процессе имеют начальный размер ~100 мкм, а конечный 3-5 мкм;
- исключает операцию обеззоливания геля;
- вязкость суспенизонно-эмульсионной жидкой топливной системы существенно ниже вязкости топливного геля - твердообразной текущей системы, образованной коллоидными частицами в форме пространственного сетчатого каркаса, ячейки которого заполнены иммобилизованной жидкостью;
- снижает затраты на производство 1 т ЖУТ за счет снижения эксплуатационных и капитальных затрат;
- капитальные затраты снижаются за счет отсутствия необходимости приобретения парка технологического оборудования: центрифуг; насосов; подогревателей;
- эксплуатационные затраты снижаются за счет отсутствия необходимости эксплуатации в дополнительное время ударного или кавитационного эмульгатора, центрифуг, насосов и подогревателей топлива.
Пример возможного использования изобретения можно привести на базе Таловского буроугольного месторождения Томской области РФ.
Бурый уголь - сырец, добытый в сухоройном карьере, обладающий калорийностью 2800-3200 ккал/кг, зольностью 20-30% и влажностью 40-50%, подается в прямоточную барабанную сушилку и после сушки, при влажности 8-16%, направляется в пиролизную печь, где претерпевает термический передел при температуре 340-460°С без доступа воздуха на твердый, жидкие и газообразный компоненты. При этом газ пиролиза включен в оборотную схему процесса в качестве сушильного агента барабанной мельницы (дымовые газы от его сжигания).
Опытная переработка бурого угля на пиролизной установке ООО «НПП» БИОТОП» (10-20 тыс. т угля в год) обеспечивает следующий выход компонентов в пересчете на 1 т абсолютно сухого бурого угля:
- полукокс 4500-5500 ккал/кг - 44%;
- смольная фракция 5000-10000 ккал/кг - аналог топочного мазута марки М40 - 20%;
- подсмольная вода - 16%;
- газ пиролиза 5000-5600 ккал/кг - 11,4%;
- потери - 8,6%.
Полученный полукокс измельчают в вибромельнице типа ВМ-200 (или ВМ-400) и фракцию менее 150 мкм через классификатор подают в гомогенизатор типа ГУУМП, куда вводят смольную фракцию и подсмольную воду (угольную суспензию). Гудроударный узел мокрого помола гомогенизирует смесь, образуя суспензию - дисперсную систему первого порядка - микрочастичек полукокса размерами 3-5 мкм в микрокапельках смольной фракции размерами 6-10 мкм в эмульсии - дисперсной системе второго порядка - микрокапельки смольной фракции в подсмольной воде.
В результате непрерывного технологического процесса из влажного бурого угля получаем ЖУТ с теплотворной способностью 4700-5500 ккал/кг и кинематической вязкостью менее 40 cSt.
Минеральная составляющая ЖУТ из таловских бурых углей при сжигании в топках, например, Томской ТЭЦ-3 благодаря высокотемпературному воздействию при 950-1250°С будет выделять в пыли дымовых газов и нагаре ценные летучие рассеянные элементы в виде оксидов мышьяка, германия, галлия и других (сырье для местной полупроводниковой промышленности), а в золе будет концентрироваться рубидий, цезий, скандий, литий, бериллий, ванадий (сырье для Сибирского химкомбината).
Таким образом, заявленный способ обеспечивает технический результат, состоящий в получении из низкокалорийного твердого углеродсодержащего сырья с приемлимым выходом среднекарорийного, маловязкого, малообразивного жидкого топлива, пригодного для эффективного сжигания.
название | год | авторы | номер документа |
---|---|---|---|
ЖИДКОЕ УГОЛЬНОЕ ТОПЛИВО | 2014 |
|
RU2550815C2 |
СПОСОБ СЖИГАНИЯ ЖИДКОГО УГОЛЬНОГО ТОПЛИВА | 2014 |
|
RU2552016C2 |
СПОСОБ СТАБИЛИЗАЦИИ ЖИДКОГО УГОЛЬНОГО ТОПЛИВА | 2014 |
|
RU2552013C2 |
СПОСОБ КОНЦЕНТРИРОВАНИЯ РАССЕЯННЫХ ЭЛЕМЕНТОВ | 2014 |
|
RU2553109C2 |
СПОСОБ ПОЛУЧЕНИЯ ЗОЛОЦЕМЕНТА | 2014 |
|
RU2543833C2 |
СПОСОБ ПЕРЕРАБОТКИ ТВЕРДОГО ТОПЛИВА В ЖИДКОЕ | 2010 |
|
RU2446202C1 |
СПОСОБ ПОДГОТОВКИ БУРОУГОЛЬНОГО СЫРЬЯ К ГИДРОМЕТАЛЛУРГИЧЕСКОМУ ПЕРЕДЕЛУ | 2014 |
|
RU2557265C2 |
СПОСОБ ПЕРЕРАБОТКИ НЕФТЕСОДЕРЖАЩИХ ОТХОДОВ НА ОСНОВЕ НЕФТЕШЛАМОВ, МАЗУТА ИЛИ ИХ СМЕСИ С ПОЛУЧЕНИЕМ ВОДОЭМУЛЬСИОННОГО ТОПЛИВА | 2016 |
|
RU2620266C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛУРГИЧЕСКОГО КОКСА | 2013 |
|
RU2553116C1 |
ТОПЛИВНО-МЕТАЛЛУРГИЧЕСКИЕ ГРАНУЛЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ И МЕТАЛЛИЗАЦИИ | 2014 |
|
RU2568797C2 |
Изобретение относится к способу получения жидкого угольного топлива, который включает гомогенизирование продуктов термического передела угля, при этом осуществляют совместное гомогенизирование полукокса, смольной фракции и подсмольной воды таким образом, что полукокс фракции 3-5 мкм суспендируется в микрокапли смольной фракции, которые являются дисперсной фазой эмульсии с дисперсной средой в виде подсмольной воды, а получаемое топливо приобретает кинематическую вязкость 10-40 cSt при температуре 50°С. Технический результат - получение среднекалорийного, маловязкого и малоабразивного жидкого угольного топлива. 1 з.п. ф-лы.
1. Способ получения жидкого угольного топлива, включающий гомогенизирование продуктов термического передела угля, отличающийся тем, что осуществляют совместное гомогенизирование полукокса, смольной фракции и подсмольной воды таким образом, при котором полукокс фракции 3-5 мкм суспендируется в микрокапли смольной фракции, которые являются дисперсной фазой эмульсии с дисперсной средой в виде подсмольной воды, а получаемое топливо приобретает кинематическую вязкость 10-40 cSt при температуре 50°С.
2. Способ по п. 1, отличающийся тем, что в дисперсную среду эмульсии суспендируют уголь фракции 3-5 мкм.
Перекатываемый затвор для водоемов | 1922 |
|
SU2001A1 |
Способ получения топливной композиции | 1979 |
|
SU922134A1 |
СПОСОБ ПОЛУЧЕНИЯ ТОПЛИВНОЙ СУСПЕНЗИИ | 2006 |
|
RU2317319C1 |
Способ получения водоугольной суспензии | 1988 |
|
SU1616970A1 |
KR 2010096432 A 02.09.2010 |
Авторы
Даты
2015-05-20—Публикация
2014-04-07—Подача