СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ПРЕОБРАЗОВАНИЯ ПЬЕЗОКЕРАМИЧЕСКИХ АКСЕЛЕРОМЕТРОВ Российский патент 2015 года по МПК G01P21/00 

Описание патента на изобретение RU2553750C1

Способ относится к области пьезотехники в части измерения коэффициента преобразования акселерометров методом сравнения с калибровочным акселерометром и может быть использован в изделиях пьезотехники более конкретного назначения, например сейсмодатчиках, вибродатчиках, чувствительных элементах для них и других [1]. Область применения может быть расширена и на другие области науки и техники, где возникает аналогичная задача.

Для простоты изложения, в рамках материалов заявки, принято ограничение этих областей пьезоэлектрическими, а точнее пьезокерамическими акселерометрами, разновидностями которых являются геофоны, сейсмодатчики, вибродатчики, чувствительные элементы для них и др. Основной физический принцип их работы одинаков, различие составляют лишь диапазоны их рабочих частот, условия эксплуатации и конструктивные особенности. Таким образом, в дальнейшем будет рассматриваться пьезокерамический акселерометр, т.е. акселерометр, в котором используется пьезокерамический чувствительный элемент, преобразующий силовое воздействие, вызванное ускорением, в электрический сигнал, вследствие прямого пьезоэффекта (далее - акселерометр).

Следует заметить, что пьезокерамические акселерометры отличаются высокой чувствительностью, а именно способностью обнаруживать слабые ускорения. Легко реализуемая на практике возможность снижения этой чувствительности и коэффициента преобразования позволяет перекрыть диапазон измеряемых величин порядка от 10-6g до 102g и более, внося незначительные регулирования режимов работы усилительного тракта или незначительные изменения конструкции чувствительного элемента.

Одним из основных параметров акселерометра является коэффициент преобразования (К), как размерная величина, полученная отношением величины электрического сигнала-реакции акселерометра на ускорение к величине самого ускорения.

Существует несколько методов измерения К: абсолютный, основанный, в частности, на применении лазерного датчика перемещений; относительный, основанный на сравнении электрических сигналов - реакций на воздействие одинаковой вибрации калибровочного акселерометра, с известным К и калибруемого акселерометра, величину К которого необходимо найти; метод, основанный на применении калибраторов - источников вибрации с точно определенными параметрами [2].

Наиболее широкое распространение получил относительный метод или метод сравнения, как наиболее простой и доступный в реализации [3]. Именно он взят за основу в рамках материалов заявки.

По этому методу искомое К определяют по формуле

где K2 - искомое K калибруемого акселерометра;

K1 - величина К калибровочного акселерометра;

Х1 - выходной электрический сигнал калибровочного акселерометра, как реакция на внешнее воздействие (ускорение);

Х2 - выходной электрический сигнал калибруемого акселерометра, как реакция на то же внешнее воздействие (ускорение).

Акселерометр с известной величиной К, используемый в относительном методе определения К, в разных источниках называют эталонным, калибровочным и др. В рамках материалов заявки он назван калибровочным, в соответствии с сертификатами о калибровке, выдаваемыми ФГУП ВНИИФТРИ. Акселерометр, аналогично, называют датчиком вибрации и удара, преобразователем и т.д. [3]. В рамках материалов заявки за ним сохранено название - акселерометр.

Существует зависимость формы сигнала-реакции от формы сигнала -внешнего воздействия - ускорения. В дальнейшем это ускорение, в рамках материалов заявки, будет названо как тестовое ускорение, поскольку оно создается искусственно, как наиболее удобное, для определения К2. Эта зависимость обусловлена прежде всего тем, что спектр тестового сигнала и амплитудно-частотная характеристика аппаратуры, регистрирующей сигнал-реакцию, могут привести к искажению последнего, не одинаковому для случаев калибровочного и калибруемого акселерометров, что приведет к неверному результату определения К2.

Известен способ измерения коэффициента преобразования акселерометров, включающий в себя создание тестового ускорения синусоидальной формы, со строго регламентированным коэффициентом гармоник, воздействующего на калибровочный и калибруемый акселерометры, определение по неискаженному сигналу-реакции акселерометров на это ускорение путем измерения амплитуд синусоид Х1 и Х2 как параметра сигнала-реакции и по их отношению к известному коэффициенту преобразования калибровочного акселерометра К] коэффициента преобразования калибруемого акселерометра К2 [3].

Недостатками способа являются:

1. Необходимость создания синусоидального ускорения акселерометров с низким уровнем коэффициента гармоник, что требует высококачественных сигналов генератора, усилителя мощности и вибростенда, а также измерителя коэффициента гармоник. Это, в свою очередь, сужает возможности способа, в части номенклатуры калибруемых и калибровочных акселерометров, удорожает его практическую реализацию [4].

2. Возможное упрощение практической реализации способа путем создания вибраций самого рабочего стола с помощью вибростенда или иного источника вибраций не снижает требований к синусоидальности формы колебаний.

Наиболее близким к предлагаемому техническому решению является способ измерения коэффициента преобразования акселерометров, включающий в себя создание несинусоидального периодического тестового ускорения, воздействующего одновременно на калибровочный и калибруемый акселерометры, определение по сигналу-реакции акселерометров на это ускорение путем измерения амплитуд гармоники Х1 и X2, как параметра сигнал-реакции, находящейся в пределах диапазона рабочих частот акселерометров, и по их отношению к известному коэффициенту преобразования калибровочного акселерометра К1 коэффициента преобразования калибруемого акселерометра К2 [3].

Сущность способа заключается в следующем. При воздействии на акселерометры ускорением несинусоидальной формы, но периодического, сигнал-реакция акселерометров будет также периодическим. Если из него выделить гармонику, например первую, и если она будет находиться в пределах диапазона рабочих частот обоих акселерометров, где предполагается, что К=Const, то отношение ее величины Х1 для калибруемого акселерометра к величине Х2 калибровочного дает отношение их коэффициентов преобразования , откуда по формуле (1) определяют коэффициент преобразования калибруемого акселерометра. На практике требование К=Const означает соблюдение этого условия с точностью до допусков, погрешностей и т.д., разрешенных техническими требованиями на конкретное изделие.

Недостатки этого способа заключаются в следующем.

1. Необходимость использования специализированных и дорогостоящих приборов, например генератора сигналов, усилителя мощности, вибростенда, анализатора и т.д., для надежного возбуждения вибраций акселерометров, выделения и измерения гармоник сигнала их реакции.

2. Неизбежные требования к спектральным характеристикам тестового ускорения, их стабильности и т.д.

Эти недостатки удорожают и усложняют практическую реализацию способа, особенно в цеховых или лабораторных условиях.

Одним из путей решения этих задач является более полное использование свойств относительного способа измерений в части сравнения сигнала-реакции каждого из акселерометров на воздействие на них одновременно одного из видов тестового ускорения, формируемого в виде реакции поверхности, на которой размещены оба акселерометра (например, части лабораторного стола) на импульсное механическое воздействие на нее, например ударное. При этом должна быть обеспечена идентичность тестового ускорения, воздействующего на каждый из акселерометров, что легко реализуемо на практике. Такую поверхность в рамках материалов заявки будем называть рабочей.

Высокая чувствительность пьезокерамических акселерометров позволяет обеспечить их калибровку методом сравнения даже при малых тестовых ускорениях, исключающих нелинейные эффекты и существенно снижающих требования к качеству рабочей поверхности. Это становится особенно актуальным при измерении величины К при одновременном внешнем воздействии как ускорением, так и другим, например температурой, при определении его температурной зависимости. При этом возможно наиболее простое техническое решение поставленной задачи, основанное на сравнении сигналов-реакций акселерометров на импульсное тестовое ускорение. Это становится возможным при соблюдении условия достаточной широкополосности регистрирующей аппаратуры и сравнительной узкополосности частотного спектра воздействующего тестового ускорения. При соблюдении такого условия сигналы-реакции обоих акселерометров будут идентичны по форме и могут отличаться только по амплитуде. Отношение этих амплитуд равно отношению величин К1 и К2. Условие узкополосности можно определить как ограничение частотного спектра тестового ускорения снизу частотой fH, а сверху частотой fB, а условие широкополосности регистрации сигнала-реакции как ограничение диапазона рабочих частот снизу частотой fH1, а сверху частотой fB1, причем:

fH>fH1,

fB<fB1.

Кроме того, при исследовании амплитудно-частотных характеристик акселерометров обычными методами возникает необходимость в высококачественных, а следовательно, дорогостоящих акселерометрах, даже для небольшого диапазона частот, обеспечивающих синусоидальное тестовое ускорение акселерометров. При этом также возникает ограничение номенклатуры акселерометров, подлежащих калибровке, по их массогабаритным показателям [4]. Эти трудности устраняются путем воздействия на рабочую поверхность периодически повторяющимся ускорением, сформированным источником вибраций, например высокочастотным вибростендом 4290, работающим на частотах ниже граничной fH=200 Гц, например 60 Гц. Возникающие при этом искажения не лишают тестовое ускорение периодичности и, при соблюдении вышеприведенных условий, позволяют измерять величину К2.

Задачей, на решение которой направлено данное изобретение, является достижение технического результата, заключающегося в существенном уменьшении зависимости области применения способа от массогабаритных показателей калибруемых акселерометров, существенном упрощении самого способа, резком снижении стоимости контрольно-измерительного места.

Поставленная задача решается в способе измерения коэффициента преобразования пьезокерамических акселерометров, включающем в себя создание несинусоидального тестового ускорения, идентично воздействующего на калибровочный и калибруемый акселерометры, определение по параметру сигнала-реакции акселерометров на это ускорение, зависящему от их коэффициентов преобразования, по известному коэффициенту преобразования калибровочного акселерометра, коэффициента преобразования калибруемого акселерометра, отличающемся тем, что тестовое ускорение создают в два этапа, сначала создают ускорение источника вибраций, которым воздействуют на рабочую поверхность, на которой размещены акселерометры, а затем используют ее механическую реакцию на это воздействие в качестве тестового ускорения, воздействующего на акселерометры, а параметры сигнала-реакции акселерометров выбирают с учетом особенностей частотного спектра этого ускорения. При этом ускорение, воздействующее на рабочую поверхность, может быть как одиночным импульсом ускорения таким, что частотный спектр тестового ускорения ограничен снизу частотой fH, а сверху частотой fB, а сигнал-реакцию акселерометров регистрируют в полосе частот, ограниченной снизу частотой fH1, а сверху частотой fB1, при этом соблюдают условие: fH>fH1, fB<fB1, а в качестве параметра сигнала-реакции акселерометров выбирают его амплитудное значение, так и периодически повторяющимся ускорением.

Таким образом, отличительными признаками изобретения является то, что тестовое ускорение создают в два этапа, сначала создают ускорение источника вибраций, которым воздействуют на рабочую поверхность, на которой размещены акселерометры, а затем используют ее механическую реакцию на это воздействие в качестве тестового ускорения, воздействующего на акселерометры, а параметр сигнала-реакции акселерометров выбирают с учетом особенностей частотного спектра этого ускорения.

Указанная совокупность отличительных признаков и позволяет достичь технического результата.

Пример реализации способа

Изложенные технические решения были применены при изготовлении сейсмодатчиков СД-1Э и микроакселерометров МА1Э. В качестве рабочей поверхности была использована поверхность лабораторного стола, а источником вибраций, воздействующим на эту поверхность, служил вибростенд 4290 (Брюль и Къерр). Исследуемые образцы размещались на поверхности лабораторного стола. Регистрация сигналов с акселерометров осуществлялась с помощью персонального компьютера и осциллографической приставки к нему.

В качестве примера на фиг.1-3 приведены сигналы с микроакселерометра МА1Э-2 и акселерометра 4514-002 (Брюль и Къерр), полученные вышеизложенным способом. Оба акселерометра прошли калибровку в ФГУП ВНИИФТРИ и их коэффициенты преобразования на частоте 160 Гц с погрешностью ±3% составляют:

МА1Э-2 - 3,00 B/g

4514-002 - 0,492 B/g

Оба акселерометра при измерениях крепились на металлической шайбе ⌀60×15 с помощью виброзамазки, а сама шайба с акселерометрами располагалась на рабочей поверхности стола.

Фиг.1 соответствует синусоидальному возбуждению частотой 200 Гц; фиг.2 - несинусоидальному возбуждению частотой 60 Гц и фиг.3 - импульсному (ударному) возбуждению.

Если принять коэффициент преобразования акселерометра 4504-002 за эталон, то вычисленный по формуле (1) из приведенных экспериментальных данных коэффициент преобразования МА1Э-2 составит:

Фиг.1 - 3,07 B/g

Фиг.2 - 3,00 B/g

Фиг.3 - 2,95 B/g

Отметим, что при вычислениях в первых двух случаях использовались эффективные значения напряжения сигналов акселерометров, а в последнем - максимальные значения амплитуды импульсного сигнала.

Видно, что полученные значения коэффициента преобразования мало отличаются от калибровочного значения, полученного в ФГУП НИИФТРИ, и это свидетельствует в пользу предлагаемого способа измерения коэффициента преобразования.

Литература

1. Датчики теплофизических и механических параметров. Справочник. Том II, М., «Радиотехника», 2000.

2. Методы калибровки акселерометров: www.zetlab.ru/support/analysers/metodi_kalibrovki.

3. ГОСТ Р ИСО 16063-21-2009.

4. Зинченко В.Н, Каширин Н.А. и др. «Методика измерения коэффициента преобразования пьезокерамического микроакселерометра для информационно-управляющих систем». Журнал Оборонный комплекс - научно-техническому прогрессу России, вып.4 (120), г. Москва, 2013 г.

Похожие патенты RU2553750C1

название год авторы номер документа
ИЗМЕРИТЕЛЬНЫЙ СТЕНД ДЛЯ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ПРЕОБРАЗОВАНИЯ ПЬЕЗОКЕРАМИЧЕСКИХ АКСЕЛЕРОМЕТРОВ 2014
  • Зинченко Владимир Никитович
  • Нечаев Виктор Михайлович
  • Каширин Николай Александрович
  • Шелехов Владимир Николаевич
  • Щёголева Татьяна Валерьевна
  • Васильева Елена Викторовна
RU2540940C1
Маятниковый калибровочный вибростенд 2020
  • Ковалев Сергей Николаевич
RU2749702C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ВИБРАЦИИ НАКОНЕЧНИКА УЛЬТРАЗВУКОВОГО ВОЛНОВОДА 2015
  • Еняков Александр Михайлович
RU2593444C1
ВИБРОДАТЧИК С ЭЛЕМЕНТОМ ЦИФРОВОЙ КАЛИБРОВКИ 2013
  • Давыдов Вячеслав Федорович
  • Батырев Юрий Павлович
  • Дунаевский Виктор Павлович
  • Кряжев Дмитрий Геннадьевич
  • Веселова Елена Юрьевна
RU2558636C2
СПОСОБ ОПРЕДЕЛЕНИЯ НЕЛИНЕЙНОСТИ ВЫХОДНОЙ ХАРАКТЕРИСТИКИ АКСЕЛЕРОМЕТРА 2009
  • Лапенко Вадим Николаевич
  • Тимошенков Сергей Петрович
  • Пасютин Антон Викторович
  • Кик Михаил Андреевич
  • Кик Дмитрий Андреевич
RU2398242C1
Способ измерения относительного коэффициента поперечного преобразования акселерометра 1976
  • Козлов Валерий Васильевич
  • Янчич Владимир Владимирович
  • Донсков Виктор Иванович
SU602867A1
Способ контроля качества монтажа защитного заграждения при установке его на опорах 2017
  • Бобров Станислав Олегович
  • Кобзун Виталий Геннадьевич
  • Шаповал Олег Леонидович
RU2666168C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ТЕНЗОМЕТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ДАВЛЕНИЯ (ВАРИАНТЫ) 2011
  • Семенов Александр Сергеевич
  • Бушуев Олег Юрьевич
RU2466368C1
Виброкалибровочное устройство 1982
  • Браженко Александр Иванович
  • Слонов Валерий Григорьевич
  • Маленький Владимир Александрович
  • Мишенин Геннадий Иванович
SU1067385A1
ИЗМЕРИТЕЛЬ ТОЛЧКОВОГО ИМПУЛЬСА СПОРТСМЕНА 2011
  • Асеев Валерий Викторович
  • Давыдов Вячеслав Федорович
  • Савохин Валерий Тихонович
  • Данов Генрих Андреевич
  • Таранова Ирина Геннадьевна
RU2458327C1

Иллюстрации к изобретению RU 2 553 750 C1

Реферат патента 2015 года СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ПРЕОБРАЗОВАНИЯ ПЬЕЗОКЕРАМИЧЕСКИХ АКСЕЛЕРОМЕТРОВ

Изобретение относится к области пьезотехники и используется для измерения коэффициента преобразования акселерометров методом сравнения с калибровочным акселерометром. Предложен способ измерения коэффициента преобразования пьезокерамических акселерометров, в котором тестовое ускорение, необходимое для измерения коэффициента преобразования, создают в два этапа. Сначала создают ускорение источника вибраций, которым воздействуют на рабочую поверхность, на которой размещены измеряемый и калибровочный акселерометры, а затем используют ее механическую реакцию на это воздействие в качестве тестового ускорения. Технический результат, достигаемый от осуществления заявленного изобретения, заключается в существенном уменьшении зависимости от массогабаритных показателей калибруемых акселерометров. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 553 750 C1

1. Способ измерения коэффициента преобразования пьезокерамических акселерометров, включающий в себя создание несинусоидального тестового ускорения, идентично воздействующего на калибровочный и калибруемый акселерометры, определение по параметру сигнала-реакции акселерометров на это ускорение, зависящему от их коэффициентов преобразования, по известному коэффициенту преобразования калибровочного акселерометра, коэффициента преобразования калибруемого акселерометра, отличающийся тем, что тестовое ускорение создают в два этапа, сначала создают ускорение источника вибраций, которым воздействуют на рабочую поверхность, на которой размещены акселерометры, а затем используют ее механическую реакцию на это воздействие в качестве тестового ускорения, воздействующего на акселерометры, а параметры сигнала-реакции акселерометров выбирают с учетом особенностей частотного спектра этого ускорения.

2. Способ по п.1, отличающийся тем, что на рабочую поверхность воздействуют одиночным импульсом ускорения таким, что частотный спектр тестового ускорения ограничен снизу частотой fH, а сверху - частотой fB, а сигнал-реакцию акселерометров регистрируют в полосе частот, ограниченной снизу частотой fH1, а сверху - частотой fB1, при этом соблюдают условие: fH>fH1, fB<fB1, а в качестве параметра сигнала-реакции акселерометров выбирают его амплитудное значение.

3. Способ по п.1, отличающийся тем, что на рабочую поверхность воздействуют периодически повторяющимся ускорением.

Документы, цитированные в отчете о поиске Патент 2015 года RU2553750C1

Способ калибровки виброизмерительного тракта 1991
  • Скворцов Олег Борисович
  • Королев Сергей Алексеевич
SU1820337A1
Способ калибровки пьезоэлектрических акселерометров 1988
  • Епифанов Виктор Павлович
SU1569730A1
RU 2011151093 A, 20.06.2013
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Предохранительное устройство для паровых котлов, работающих на нефти 1922
  • Купцов Г.А.
SU1996A1

RU 2 553 750 C1

Авторы

Зинченко Владимир Никитович

Нечаев Виктор Михайлович

Каширин Николай Александрович

Шелехов Владимир Николаевич

Щёголева Татьяна Валерьевна

Нигметов Геннадий Максимович

Даты

2015-06-20Публикация

2014-03-27Подача