Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении вяжущих для растворов, бетонов и конструкций из них.
Известные серные бетоны, приготовленные на основе вяжущего с использованием серы в качестве связующего, обладают рядом положительных свойств: быстрым набором прочности, относительно высокой прочностью на сжатие (до 60 МПа). способностью отверждаться при отрицательной температуре и под водой, возможностью повторного использования при нагреве, водонепроницаемостью, атмосферо- и морозостойкостью, химической стойкостью, низкими тепло- и электропроводностью (Волгушев А.Н. Серное вяжущее и композиции на его основе. // Бетон и железобетон, -1997. - №5 - с. 51).
Однако современные материалы на основе серы предполагают только механическое смешение компонентов, основанное на предварительном плавлении инертной в обычных условиях серы.
Известны также серные вяжущие бетоны, использующие не кристаллическую серу, а полимерную, которая образуется под воздействием активаторов (катализаторов) серы - тетраполисульфида. Элементная сера при его действии приобретает большую реакционную способность, обусловленную раскрытием циклических молекул серы S8 и преобразованием их в полимерные цепочки. При взаимодействии серы с известняковым наполнителем, обладающим пористостью и гидрофобностью, происходит ее проникновение в глубь минерального зерна за счет адсорбционных процессов и избирательной фильтрации, способствующих формированию структурно-механических связей и образованию структур повышенной прочности. Так, в RU 2232149 С2, опубл. 10.07.2004 описано вяжущее, содержащее серу, наполнитель - известняк доломитизированный, стабилизатор полимерной серы - серосодержащий полимер -тетраполисульфида. Указанное вяжущее является наиболее близким аналогом. Однако известное вяжущее имеет недостаточную прочность, низкие значения устойчивости к агрессивным средам, морозостойкости и высокое водопоглощение.
Изобретение направлено на повышение прочности, устойчивости к агрессивным средам, морозостойкости и понижение водопоглощения.
Результат достигается тем, что вяжущее, включающее серу, наполнитель - кремнеземсодержащее соединение, модификатор-стабилизатор серы, согласно изобретению содержит в качестве кремнеземсодержащего соединения - опал-кристобалитовую породу тониной не более 5 мм, модифицированную модификатором-стабилизатором - хлоридом алюминия или хлоридом титана, или хлоридом цинка, или хлоридом железа при температуре 200°C в течение 20 минут при следующем соотношении компонентов, масс. %: сера 37,0-38,4, опал-кристобалитовая порода 58,6-62,0, указанный модификатор-стабилизатор 1,0 - 3.0.
Для приготовления заявляемого вяжущего были использованы:
Cepa (S) - ГОСТ 127-93 опал-кристобалитовая порода месторождения тониной не более 5 мм (ТУ 5717-001-33895408-96 Породы опал-кристобалитовые). Выбор опал-кристобалитовой породы в качестве наполнителя обусловлен аморфностью, пористостью и реакционно-активными свойствами кремнезема опал-кристобалитовых пород; при взаимодействии серы и наполнителя на границе фаз происходят как адсорбционные, так и химические процессы с образованием прочных химических связей, что способствует формированию плотной однородной структуры материала.
Модификаторы-стабилизаторы - хлорид алюминия (ГОСТ 3759-75), или хлорид титана (ТУ 6-09-2118-77), или хлорид цинка (ГОСТ 4529-78), или хлорид железа (ГОСТ 4147-74).
Нами установлено активирующее действие хлоридов металлов на серу, заключающееся в дестабилизации и раскрытии циклических молекул и образовании реакционно-активных радикалов с их последующим присоединением к хлоридам металлов и образованием устойчивых сульфидных комплексов, стабилизирующих систему. Таким образом, указанные модификаторы-стабилизаторы - хлорид алюминия, хлорид титана, хлорид цинка, хлорид железа оказывают двойное действие: являются катализаторами разрыва серного кольца, образованием активных серных радикалов и химического взаимодействия компонентов с образованием различных сульфидов, что способствует стабилизации системы и формированию плотной однородной структуры материала.
Образцы вяжущего готовили следующим образом.
Опал-кристобалитовую породу измельчали до тонины не более 5 мм и модифицировали стабилизатором-модификатором хлоридом алюминия (или цинка, или железа, или титана) при Т=200°C, время модифицирования - 20 минут. Далее модифицированный кремнеземсодержащий наполнитель смешивали с измельченной серой. Смесь серы с наполнителем нагревали до температуры 140-170°C при постоянном перемешивании, продолжительность нагрева 40 минут. Подготовленная смесь выгружалась в подогретые (T=140°C) формы-кубы 2×2×2 см и прессовалась при стандартном давлении 120 кг/см2. Распалубка формы и контроль производили после остывания изделий до температуры 35-40°C. Полученные образцы, изготовленные по предложенной рецептуре и описанной технологии, с различным процентным содержанием компонентов, а также их основные характеристики приведены в таблице.
* Результаты получены при лабораторных испытаниях образцов прототипа, изготовленных согласно технологии, описанной в аналоге RU 2232149 С2, опубл. 10.07.2004
Как видно из таблицы, свойства вяжущего значительно улучшены по сравнению с прототипом: прочность при сжатии выше на 5-7%, водопоглощение в 4-7 раз ниже вяжущего по прототипу, морозостойкость выше в 1,2-1,3 раза, стойкость к воздействию 5% хлороводородной кислоты и 5% серной кислоты выше на 11-13%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ | 2014 |
|
RU2555177C1 |
ВЯЖУЩЕЕ | 2019 |
|
RU2717436C1 |
ВЯЖУЩЕЕ | 2010 |
|
RU2448067C2 |
ВЯЖУЩЕЕ | 2004 |
|
RU2270814C1 |
Состав композиционного материала для изготовления пористых гранул широкого спектра применения | 2019 |
|
RU2725997C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОГРАНУЛИРОВАННОГО ПЕНОСТЕКЛОКЕРАМИЧЕСКОГО МАТЕРИАЛА | 2014 |
|
RU2563861C1 |
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ ПЕНОСТЕКЛОКЕРАМИЧЕСКОГО ГРАНУЛИРОВАННОГО МАТЕРИАЛА | 2014 |
|
RU2556752C1 |
Керамическая масса для осветленного строительного отделочного кирпича | 2021 |
|
RU2787506C1 |
Керамическая масса | 2022 |
|
RU2787483C1 |
ДОБАВКА ДЛЯ МОДИФИКАЦИИ ГИПСОВЫХ ВЯЖУЩИХ, СТРОИТЕЛЬНЫХ РАСТВОРОВ И БЕТОНОВ НА ИХ ОСНОВЕ | 2014 |
|
RU2572432C1 |
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении вяжущего для растворов и бетонов, конструкций из них. Технический результат - повышение прочности серобетона на основе вяжущего. Вяжущее содержит: наполнитель, серу, стабилизатор, в качестве наполнителя используют кремнеземсодержащие соединения - опал-кристобалитовые породы, а в качестве модификаторов-стабилизаторов - хлорид алюминия, хлорид титана, хлорид цинка, хлорид железа при следующем соотношении компонентов, масс.%: кремнеземсодержащие соединения 58,6-62,0; сера 37,0-38,4; хлорид алюминия, или хлорид титана, или хлорид цинка, или хлорид железа 1,0-3,0. Технический результат - повышение прочности на сжатие, уменьшение водопоглощения, морозостойкости, коррозионной стойкости к воздействию хлорной кислоты или серной кислоты. 1 табл.
Вяжущее, включающее серу, наполнитель - кремнеземсодержащее соединение, модификатор-стабилизатор серы, отличающееся тем, что оно содержит в качестве кремнеземсодержащего соединения опал-кристобалитовую породу тониной не более 5 мм, модифицированную модификатором-стабилизатором - хлоридом алюминия, или хлоридом титана, или хлоридом цинка, или хлоридом железа при температуре 200°C в течение 20 минут при следующем соотношении компонентов, масс. %: сера 37,0-38,4, опал-кристобалитовая порода 58.6-62.0, указанный модификатор-стабилизатор 1,0 - 3,0.
ВЯЖУЩЕЕ | 2002 |
|
RU2232149C2 |
Способ автоматического пуска водоотливной установки | 1936 |
|
SU84372A1 |
ВЯЖУЩЕЕ | 2000 |
|
RU2176222C1 |
СПОСОБ МОДИФИКАЦИИ И ГРАНУЛЯЦИИ СЕРЫ | 2010 |
|
RU2448925C2 |
Приспособление для перемещения кинопленки при панорамных съемках | 1930 |
|
SU24700A1 |
CA 2632850 А1 09.12.2005 | |||
ПАНТОГРАФ | 1929 |
|
SU16420A1 |
Авторы
Даты
2015-07-10—Публикация
2014-04-25—Подача