Изобретение относится к аналитическим измерительным системам, связанным с определением микропримесей, в первую очередь аэрозольных и наночастиц, в различных газах и их смесях, в том числе в воздушной атмосфере. Оно может найти применение во многих областях науки и техники, в частности при решении различного рода экологических задач, в создании сверхчистых производственных помещений, при контроле дисперсной фазы для адресной доставки лекарственных средств в органы дыхания.
Известно устройство анализа изображений частиц (Пат. US 2007 0273878 А1, G01N 21/00 от 29.11.2007), содержащее: осветительный блок, блок для захвата изображения и блок обработки изображения. Работа устройства заключается в освещении частиц, захвате полученного изображения и обработке полученных изображений с помощью порогового устройства для анализа извлеченных частиц и получения их морфологических особенностей.
Недостаток данного устройства состоит в том, что оно не позволяет проводить измерения наночастиц.
Известен способ исследования микрообъектов (Пат. RU 2154815, G01N 15/02 от 20.05.1998). который состоит в том, что исследуемые микрообъекты облучают пучком излучения, максимальный линейный размер объема когерентности которого в зоне облучения микрообъектов не превышает 30% от среднего расстояния между частицами в пространстве. С помощью оптической системы формируют изображения исследуемых микрообъектов и после считывания измеряют их геометрические параметры на уровне сигнала, зависящем от когерентности освещения и апертурного угла оптической системы формирования изображения.
Недостаток данного способа состоит в том. что данным способом не возможно определить размеры частиц нано-метрового диапазона.
В основе методов измерения концентрации дисперсного состава аэрозольных частиц наноразмеров лежит укрупнение частиц за счет их конденсационного роста в среде пересыщенного пара (например, водяного) и измерение концентрации и размеров выросших капель с помощью обычных оптико-электронных методов.
Процесс конденсации пара на взвешенных в газовой смеси частицах веществ (ядра конденсации) и образования тумана начинается при достижении определенного пересыщения:
S=(p/p0)-l,
где р0 - давление насыщенного пара над плоской поверхностью конденсата; p - давление пара над каплей. В состоянии термодинамического равновесия между каплей и газовой средой р определяют как давление пара в газовой смеси.
При достаточно больших пересыщениях связь радиуса капли r и действующего пересыщения S выражается уравнением Кельвина с поправкой Томсона на электрический заряд ядра:
где σ и ρж - поверхностное натяжение и плотность конденсата; k - постоянная Больцмана; Т - температура газа; m - масса молекулы пара; е - электрический заряд.
Пользуясь формулой (1), нетрудно оценить, какое пересыщение необходимо создать, чтобы капли выросли до граничного размера, который способен зафиксировать оптический прибор.
При достаточно больших пересыщениях (S>3) водяного пара в воздухе центрами конденсации могут быть легкие аэроионы (r<10-7 см, е=1,6·10-19 Кл). Все ядра, начиная от r<0.1 мкм вплоть до размеров ионов, называют в литературе ядрами Айткена.
Частицы, проявляющиеся при малых пересыщениях S<0,1 в воздухе, называют облачными ядрами конденсации, т.е. ядрами, на которых образуются капли облаков и туманов.
Первая конструкция счетчиков ядер конденсации описана в 1888 г. Айткеном и затем усовершенствована Шольцем в 1932 г. В этих приборах выросшие в пересыщенном водяным паром воздухе капельки сосчитываются визуально после их седиментации на стеклянной подложке (Беляев С.П., Никифорова Н.К., Смирнов В.В. и др. "Оптико-электронные методы изучения аэрозолей", М.: Энергоиздат, 1981, с.102).
Недостатком первых конструкций счетчиков ядер конденсации является отсутствие автоматического контроля.
Известен способ анализа примесей в газах, основанный на образовании аэрозольных частиц на отдельных молекулах (А.С. 188132, G01N 15/00 от 23.06.1961). На первом этапе для укрупнения самых мелких ядер в газ вводят пересыщенный пар какого-либо весьма малолетучего вещества, например диоктилсебацината. На втором этапе, добавляя при комнатной температуре перенасыщенные пары более летучего вещества, например диизобутилфталата, превращают растущие ядра конденсации в частицы достаточного устойчивого монодисперсного аэрозоля, удобного для нефелометрических или ультрамикроскопических измерений.
Недостатки данного способа заключаются в его эксплуатационных неудобствах. В нем считалось обязательным последовательное воздействие пересыщенного пара сначала проявляющего вещества, потом укрупняющего. Соответственно требуются два однотипных устройства. В первом устройстве вспомогательный малый поток газа контактирует с нагретым веществом проявителя и смешивается с основным потоком газа комнатной температуры, содержащим ядра конденсации. Во втором устройстве другой вспомогательный малый поток контактирует с нагретым веществом укрупнителя и смешивается с основным потоком, поступающим из первого устройства с образованными в нем частицами ультрадисперсного аэрозоля укрупнителя.
Другой эксплуатационный недостаток способа заключается в том, что насыщенные пары во вспомогательных потоках, соприкасаясь с диафрагмой смесителей, частично конденсируются на ней и окисляются на воздухе. Окисленный конденсат представляет собой вязкое, а иногда твердое вещество, которое постепенно забивает отверстие диафрагмы, изменяя режим работы способа.
Для устранения указанных недостатков известны различные способы и устройства образования молекулярных ядер конденсации (МоЯК).
Устройство для создания дозированного пересыщения пара веществ в потоке газа (А.С. 1741105 G05D 11/00, B01F 3/02, B01F 15/04 от 15.06.1992), которое содержит соединенные с помощью металлической капиллярной трубки испарительную и смесительную части. В корпусе испарительной части имеется электронагреватель и гильза с носителем испаряемого вещества, предназначенные для насыщения малого потока газа паром вещества при повышенной температуре. Смесительная часть состоит из трубки с соплом для основного разбавляющего потока с ядрами конденсации.
Недостатком данного устройства является сложность конструкции и большие массогабаритные характеристики и энергопотребление соответствующей аппаратуры.
Известен способ определения малых примесей в газе (пат. 2253857 G01N 15/00 от 01.03.2004), который включает образование молекулярных ядер конденсации (МоЯК) в потоке газа из примесей или с их участием, испарение проявляющих и укрупняющих МоЯК веществ путем их дозированного нагрева в потоках газа, образование аэрозольных частиц и измерение их концентрации, определяющей концентрацию примесей. Нагретые потоки газа с испаренными веществами объединяют в общий поток, создают пересыщение смеси паров веществ и образуют аэрозольные частицы совместной конденсацией на МоЯК паров смеси проявляющих и укрупняющих веществ.
Недостаток данного способа заключается в применении в качестве нагревателя проволоки из золота, платины или их сплавов, а так же высокое энергопотребление. Кроме этого данный способ не позволяет определять спектр размеров ядер конденсации.
Известен способ укрупнения ядер конденсации и устройство для его осуществления (Пат. 2061219, G01N 15/00 от 27.05.1996), в котором пересыщенный пар укрупняющего вещества получают путем пропускания потока с ядрами в зазор между двумя эквидистантными поверхностями с заданной разностью температур, одна из которых (имеющая более высокую температуру) покрыта укрупняющим веществом. Способ реализуется с помощью устройства, содержащего камеру для создания пересыщения, снабженную охладителем, внутри которой установлен испаритель с электронагревателем. Камера может быть выполнена, например, в форме трубки, а испаритель цилиндрической формы расположен по ее оси.
Недостатком способа является невозможность определять для измеряемых ядер конденсации (наночастиц) спектры их размеров.
Способ определения микроконцентрации карбонитов металлов в потоке воздуха (Пат. 2356029 G01N 15/06 от 20.05.2009). который включает превращение молекул карбонила в молекулярные ядра конденсации, последующее проявление и укрупнение ядер в пересыщенных парах проявляющего и укрупняющего детектирующих веществ в конденсационных устройствах и нефелометрическое измерение светорассеяния полученного аэрозоля. При этом превращение молекул карбонила в молекулярные ядра конденсации осуществляют путем пропускания анализируемого потока через нагретую часть трубки проявляющего конденсационного устройства с нанесенным на ее внутренние стенки проявляющим веществом. Проявление ядер осуществляют в пересыщенном паре проявляющего вещества при дальнейшем прохождении потока через охлажденную часть той же трубки.
Недостатком данного способа является не возможность определения размерного спектра измеряемых микроконцентраций.
Наиболее близким по технической сути к предлагаемому способу является способ измерения спектра размеров ядер конденсации аэрозольных частиц и устройство для его реализации (Пат. 2340885, G01N 15/02 от 26.10.2006), включающий пропускание газа (или смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа, введение их в пересыщенные пары низко летучего укрупняющего вещества, конденсацию паров на ядрах частиц с образованием аэрозоля, концентрацию которого определяют оптическим счетчиком. На этом способе основана так же работа диффузионного аэрозольного спектрометра Модели 2702, выпускаемого ООО «АэроНаноТех» (г. Москва).
Недостаток данного способа и основанного на нем спектрометра состоит в том, что расчет спектра размеров частиц осуществляется косвенно с использованием гамма распределения и решения сложной системы нелинейных алгебраических уравнений, так как анализ спектра размеров укрупненных аэрозольных частиц производится, путем последовательного измерения проскоков частиц через пять диффузионных батарей сетчатого типа и канал без батарей (нулевой канал).
Технический результат, который может быть получен при осуществлении изобретения, состоит в снижении времени измерений и повышении их точности.
Этот результат достигается тем, что устройство определения спектра размеров взвешенных наночастиц состоит в пропускании газа (смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа, введение их в перенасыщенные пары низко летучего укрупняющего вещества, освещении потока частиц световым пучком и регистрации параметров световых сигналов, формируемых укрупненными частицами при их пролете через выделенную область потока. Для повышения точности определения спектра размеров основной поток разделяется на шесть параллельных потоков, пять из которых пропускаются через пять диффузионных батарей с различным проскоком, а один напрямую, далее эти потоки проходят через шесть устройств конденсационного роста и затем поступают в поле зрения матрицы ПЗС, и полученные шесть областей изображений укрупненных потоков частиц передаются в ЭВМ для анализа их спектра размеров.
На фиг.1 представлена блок-схема устройства. На фиг.2 показана конструкция устройства конденсационого роста. На фиг.3 показана конструкция одного канала устройства конденсационого роста.
Предлагаемое устройство по фиг.1 содержит импульсный источник излучения 1. оптическую систему осветителя 2, оптическую систему формирования изображений микрообъектов, состоящую из объективов 3 и 8 и фокусирующих оптическое излучение в области счетного объема потока частиц 7, ПЗС матрицу 9, аналого-цифровой преобразователь 10, компьютер 11. Так же устройство содержит входное сопло с каналами подачи 4, диффузионные батареи сетчатого типа 5, устройства конденсационного роста 6, вакуумный насос (воздуходувку) 12, температурные датчики 13 и 14, нагреватель (нихромовая проволока) 15 и охладитель (элементы Пельтье) 16, микроконтроллер управления термостатирования 17.
Оптическая система осветителя 2 включает систему линз, реализующих, например, любой из известных методов освещения микрообъектов (освещение по Келлеру, методы темного и светлого поля, критическое освещение и т.д.).
Устройство работает следующим образом. Анализируемый поток воздуха или другого газа, содержащего аэрозольные частицы, через входное сопло с каналами подачи 4 пропускается через пять диффузионных батарей 5.1-5.5, представляющих собой ряд сеточек, пропускающих аэрозольные частицы выше определенного размера. Для того, чтобы определить концентрацию частиц, прошедших через диффузионные батареи, их необходимо укрупнить до размера, при котором их можно регистрировать ПЗС-матрицей в счетном объеме 7. Это достигается конденсацией паров дибутилфталата на ядрах частиц с образованием аэрозоля в укрупняющем устройстве 6, состоящем из укрупняющих устройств для шести каналов 6.1-6.6 и дополнительного укрупняющего устройства 6.0 в канале 6.1 для возможности укрупнения наночастиц молекулярного размера.
Укрупнение происходит в каждом канале 6.0-6.6 путем нагревания верхней плоскости нагревателем 15 (нихромовая проводка) и охлаждения нижней плоскости охладителем 16 (элементы Пельтье). Управление процессами нагревания и охлаждения обеспечивается микроконтроллером управления термостатирования 17, информация о температуре в который поступает с датчиков температуры 13 и 14.
Далее шесть укрупненных потоков частиц поступают в область контроля ПЗС матрицы 9, формирование изображений на которую обеспечивает оптическая система, содержащая импульсный источник излучения 1, осветитель 2, объективы 3 и 8, фокусирующие оптическое излучение в области счетного объема потока частиц 7. С матрицы ПЗС изображение поступает в аналого-цифровой преобразователь 10 и далее в ЭВМ 11. ЭВМ осуществляет цифровую обработку полученных шести областей, характеризующих пять каналов прохождения отсортированных диффузионными батареями и напрямую (через нулевую батарею) укрупненных частиц с целью определения спектра размеров наночастиц. Так же ЭВМ управляет микроконтроллером управления термостатирования 17 и вакуумным насосом 12.
На фиг.2 показана конструкция шести каналов устройства конденсационого роста 6.0-6.6.
На фиг.3 показана конструкция одного канала устройства конденсационого роста, которое содержит нагреватель 15, охладитель 16, а так же испаритель 18, пропитанный укрупняющим веществом (дибутилфталат).
Таким образом, рассмотренное устройство, в отличие от известных, позволяет проводить обработку на ЭВМ одновременно шести изображений укрупненных частиц, характеризующих разные размерные диапазоны наночастиц.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРА РАЗМЕРОВ ВЗВЕШЕННЫХ НАНОЧАСТИЦ | 2014 |
|
RU2558281C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОКОНЦЕНТРАЦИИ КАРБОНИЛОВ МЕТАЛЛОВ В ПОТОКЕ ВОЗДУХА | 2007 |
|
RU2356029C1 |
СПОСОБ ИЗМЕРЕНИЯ МИКРОПРИМЕСЕЙ В ПОТОКЕ ВОЗДУХА | 2010 |
|
RU2444720C1 |
СПОСОБ ИЗМЕРЕНИЯ СПЕКТРА РАЗМЕРОВ ЯДЕР КОНДЕНСАЦИИ АЭРОЗОЛЬНЫХ ЧАСТИЦ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2006 |
|
RU2340885C2 |
УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ МИКРОПРИМЕСЕЙ В ПОТОКЕ ГАЗА | 2011 |
|
RU2475721C2 |
СПОСОБ УКРУПНЕНИЯ ЯДЕР КОНДЕНСАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2061219C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛЫХ ПРИМЕСЕЙ В ГАЗЕ | 2004 |
|
RU2253857C1 |
Устройство для создания дозированного пересыщения пара жидких веществ в потоке газа | 1990 |
|
SU1741106A1 |
Устройство для создания дозированного пересыщения пара веществ в потоке газа | 1990 |
|
SU1741105A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В ГАЗАХ | 2003 |
|
RU2237882C1 |
Изобретение относится к области техники, а именно автоматизации измерений при анализе взвешенных наночастиц в газах. Для этого используют устройство для определения спектра размеров взвешенных наночастиц в газах, содержащее размещенные по ходу анализируемого потока газа входное сопло с каналами подачи; диффузионные батареи сетчатого типа для пропускания аэрозольных частиц определенного размера; укрупняющее устройство конденсаторного роста; счетный объем; вакуумный насос; температурные датчики, нагреватель, охладитель и микроконтроллер для управления процессами нагревания и охлаждения в укрупняющем устройстве конденсаторного роста; оптическую систему, включающую импульсный источник излучения, осветитель и объективы для фокусировки оптического излучения в области счетного объема потока частиц и формирования изображений на матрице ПЗС; аналогово-цифровой преобразователь и ЭВМ для управления микроконтроллером термостатирования, ваккумным насосом и обработки шести изображений укрупненных частиц для анализа спектра их размеров. Устройство позволяет проводить обработку на ЭВМ одновременно шести изображений укрупненных частиц, характеризующих разные размерные диапазоны наночастиц. Изобретение позволяет уменьшить время измерений и повысить их точность. 3 ил.
Устройство для определения спектра размеров взвешенных наночастиц в газах, содержащее размещенные по ходу анализируемого потока газа входное сопло с каналами подачи; диффузионные батареи сетчатого типа для пропускания аэрозольных частиц определенного размера; укрупняющее устройство конденсаторного роста; счетный объем; вакуумный насос; температурные датчики, нагреватель, охладитель и микроконтроллер для управления процессами нагревания и охлаждения в укрупняющем устройстве конденсаторного роста; оптическую систему, включающую импульсный источник излучения, осветитель и объективы для фокусировки оптического излучения в области счетного объема потока частиц и формирования изображений на матрице ПЗС; аналогово-цифровой преобразователь и ЭВМ для управления микроконтроллером термостатирования, ваккумным насосом и обработки шести изображений укрупненных частиц для анализа спектра их размеров.
СПОСОБ ИЗМЕРЕНИЯ СПЕКТРА РАЗМЕРОВ ЯДЕР КОНДЕНСАЦИИ АЭРОЗОЛЬНЫХ ЧАСТИЦ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2006 |
|
RU2340885C2 |
JP2000171384 A, 23.06.2000 | |||
СПОСОБ ЛЕЧЕНИЯ ГИДРОЦЕФАЛИИ | 2013 |
|
RU2525215C1 |
ЛУПАНОВА Т.Н., Измерение размеров наночастиц методом динамического рассеяния света, центр коллективного пользования ИБГ РАН, методическое пособие, МОСКВА " 2013, с | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Национальный стандарт Российской Федерации, Ультрадисперсные аэрозоли, аэрозоли наночастиц и |
Авторы
Даты
2015-07-10—Публикация
2014-03-04—Подача