САМООХЛАЖДАЕМЫЙ АВТОНОМНЫЙ НАНОПРИБОР И СПОСОБ ЕГО ФОРМИРОВАНИЯ Российский патент 2015 года по МПК H01L39/24 B82B1/00 

Описание патента на изобретение RU2555512C2

Изобретение относится к способам формирования сверхпроводящих элементов электроники и может быть использовано для формирования самоохлаждаемых автономных приборов и элементов электроники, которые могут эффективно работать без использования технологии жидкого азота, и другой криогенной техники, имеющей большие габариты. При использовании автономных приборов отпадает необходимость технологического достижения «комнатной» сверхпроводимости.

Известен СКВИД (патент РФ №2289870 от 22.06.2005 г.), содержащий диэлектрическую подложку из оксида магния, магниточувствительный элемент из пленки высокотемпературного сверхпроводящего материала, в котором магниточувствительный элемент выполнен в виде полоски, помещенной между двумя трансформаторами магнитного потока, выполненными из того же пленочного высокотемпературного сверхпроводящего материала. Недостатками данного прибора являются: деградация сверхпроводящих свойств ВТСП в воздушной среде, зависимость прибора от внешних воздействий, поскольку для достижения рабочего интервала температур сверхпроводимости 92 K постоянно требуется жидкий азот.

Известен элемент СКВИД-магнитометра (патент РФ №2457502 от 28.04.2011 г.), содержащий немагнитный вакуумный криостат с плоской донной частью и фланцем на горловине, скрепленным с подвеской, размещенную в донной части криостата и установленную на подвеске совокупность градиентометров, подключенных к сверхпроводниковым квантовым интерференционным датчикам (СКВИД) постоянного тока, связанным с системой регистрации. Недостатками данного прибора являются: большие габариты, а также зависимость прибора от внешних воздействий, поскольку для достижения рабочего интервала температур сверхпроводимости постоянно требуется жидкий азот.

Известен СКВИД (патент РФ №2184407 от 02.11.2000 г.), содержащий приемный контур, контур связи для введения магнитного потока в измерительный контур, включающий ПТ-СКВИД с элементами Джозефсона, при этом магнитометр изготовлен на одном слое ВТСП пленки толщиной 10-100 нм, сформированной на изолирующей подложке, в центре которой размещен измерительный контур, часть которого, не содержащая джозефсоновских элементов, непосредственно контактирует с контуром связи, состоящим из двух витков, включенных навстречу друг другу, приемный контур окружает часть контура связи, расположенную вокруг измерительного контура, а на остальной части подложки размещен контур модуляции и обратной связи, окружающий приемный контур и часть контура связи, удаленную от измерительного контура. Недостатками данного прибора являются: деградация сверхпроводящих свойств ВТСП в воздушной среде, зависимость прибора от внешних воздействий, поскольку для достижения рабочего интервала температур сверхпроводимости 92 K постоянно требуется жидкий азот.

Известно также устройство для выделения и поглощения тепла (патент РФ №2394306 от 28.08.2008 г.), содержащее катод и анод, имеющие различную энергию Ферми электронов и подключенные к источнику электрического напряжения, катод и анод расположены с зазором между собой 10-100 мкм, при этом катод включает в себя игольчатые электроды, а в качестве материалов катода и анода выбраны такие материалы, для которых выполняется условие

q/Q=1+(Фк-Фа)/eU,

где q - дополнительное тепловыделение или теплопоглощение;

Q=IU, I - ток в цепи, U - приложенное напряжение;

Фк, Фа - энергии Ферми катода и анода соответственно,

при q>0 - анод нагревается, при q<0 - анод охлаждается.

Особенностью данного устройства при его работе в режиме теплопоглощения является выделение тепла в основном только в цепи питания, выходящей за пределы охлаждаемой области, коэффициент производства «холода» у предложенного устройства оценочно составляет до 60% от затрачиваемой электрической энергии.

Известно, что сверхпроводящие структуры электронных приборов, выполненные из различных керамик с различными критическими температурами сверхпроводимости Тс: YBa2Cu3O7 (92 K), Tl2Ca2Ba (127 K), Bi2Sr2CaCu2O8 (85 K), имеют следующие недостатки:

1. Теряют свои сверхпроводящие свойства в воздушной среде.

2. Для достижения рабочего интервала температур сверхпроводимости (85÷127 K) постоянно требуется жидкий азот, что повышает зависимость прибора от внешних воздействий.

Задачей заявляемого изобретения является создание такой конструкции СКВИДа (сверхпроводящего квантового интерференционного датчика), в которой исключены: деградация сверхпроводящих свойства в воздушной среде, зависимость достижения рабочей температуры от использования жидкого азота или других внешних криогенных установок с большими габаритами.

Указанный технический результат достигается тем, что на подложке, где сформирован СКВИД, с обратной стороны выполнено устройство для выделения и поглощения тепла, содержащее катод и анод, имеющие различную энергию Ферми электронов с возможностью подключения к источнику электрического напряжения, при этом вся подложка с сформированными на ней элементами с двух сторон заключена в вакуумную оболочку из немагнитного материала, содержащую контактные электроды.

Возможность достижения и поддержания низких температур обуславливается тем, что при к.п.д. до 60% от потребляемой электроэнергии устройство выделяет тепло за пределами вакуумной оболочки. В процессе работы СКВИДа при низких температурах Тс примерно от 77 до 92 K Тс выделяется минимальное количество тепла значительно меньшее, чем мощность холодильного устройства. При этом устройство выделяет тепло, в том числе и собственное, за пределами вакуумной оболочки.

Известен (патент РФ №2298260 от 09.11.2005 г.) способ изготовления сверхпроводникового прибора, включающий формирование джозефсоновского перехода в высокотемпературной пленке на монокристаллической подложке MgO при помощи атомно-силового микроскопа, при этом материалом текстурированной высокотемпературной сверхпроводниковой пленки является (Bi,Pb)2Sr2Ca2Cu3O10, на которой методом фотолитографии изготавливается дорожка, поперек которой протаскивают зонд атомно-силового микроскопа, формируя область переменной толщины для создания джозефсоновского перехода. Недостатком данного способа являются низкие функциональные возможности изготовленного сверхпроводящего прибора - зависимость от внешних воздействий, поскольку для достижения рабочего интервала температур сверхпроводимости 85 K постоянно требуется жидкий азот.

Известен (патент РФ N2325005 от 29.09.2006 г.) способ изготовления СКВИДов с субмикронными джозефсоновскими переходами в пленке высокотемпературного сверхпроводника, включающий нанесение пленки высокотемпературного сверхпроводника YBa2Cu3O7-x на бикристаллическую подложку методом лазерной абляции, образование методами фотолитографии токоподводов, промежуточной топологии СКВИД, и реперных шкал, размещаемых параллельно бикристаллической границе, последовательное нанесение слоев углерода, германия, позитивного электронного резиста и формирование электронной литографией основной топологии СКВИДов путем перемещения поля электронной экспозиции относительно реперных шкал, плазмохимическое травление в ВЧ-разряде с последовательным вскрытием окон в слоях германия и углерода и травление открытых участков пленки YBa2Cu3O7-х в пучке положительно заряженных ионов аргона с получением СКВИДов, при этом образуют по меньшей мере две промежуточные топологии СКВИД с различающимися внешними размерами контуров, реперные шкалы выполняют гребенчатыми, штыри которых гальванически связаны через перемычку с одним из токоподводов и основной массой, при этом одну из реперных шкал размещают между промежуточными топологиями, а остальные - снаружи их, формирование основной топологии начинают с промежуточной топологии СКВИД, имеющей большую площадь. Недостатком данного способа также являются низкие функциональные возможности изготовленного сверхпроводящего прибора - зависимость от внешних воздействий, поскольку для достижения рабочего интервала температур сверхпроводимости 92 K постоянно требуется жидкий азот.

Задачей заявляемого изобретения является создание такого способа формирования СКВИДа, полученная конструкция которого исключает: деградацию сверхпроводящих свойств в воздушной среде, зависимость достижения рабочей температуры от использования технологии жидкого азота или других внешних криогенных установок с большими габаритами.

Указанный технический результат достигается тем, что на подложке из монокристаллического материала типа SrTiO3, LaAlO3, MgO с сформированным с одной стороны СКВИДом на обратной стороне подложки размещают устройство для поглощения тепла, которое содержит катод и анод, имеющие различную энергию Ферми электронов, затем подложку через отверстие для монтажа заключают в вакуумную оболочку из ситалла, содержащую контактные электроды для двух сторон подложки, после этого отверстие для монтажа подложки закрывают крышкой из ситалла, размещают данное устройство в вакуумной камере, в которой располагают также мишень из ситалла, откачивают до давления 10-1 Па, нагревают мишень и крышку из ситалла до температуры 450÷500°C, затем лазером длиной волны 1,06 мкм, длительностью импульса 10-20 нс и частотой повторения импульсов 10 Гц, плотностью мощности 5·108÷8·108 Вт/см2 распыляют мишень из ситалла, находящуюся на расстоянии 8÷10 мм от крышки из ситалла в течение 10 минут. При этом формируется пленка из ситалла толщиной примерно 1 мкм, покрывающая крышку и выемку между отверстием для монтажа подложки в вакуумной оболочки и крышкой. Для удобства закрывания и более надежного вакуумирования отверстие для монтажа подложки в вакуумной оболочке и крышка выполнены в форме усеченного конуса, при этом толщина отверстия для монтажа подложки больше толщины крышки на 1÷2 мм, что обеспечивает использование сил адгезии не только на отрыв, но и на сдвиг.

Для осуществления способа использовалась экспериментальная установка для напыления пленок представленная на фиг.1. Установка содержит напылительную вакуумную камеру 1 с помещенной внутри нее цилиндрической кварцевой печью 2, в которой устанавливается: распыляемая лазером 3 мишень 4, размещенные через отверстие для монтажа подложки 5 в вакуумной оболочке 6 - подложка 7, СКВИД 8, устройство для поглощения тепла 9, закрытые крышкой 10. При давлении воздуха в камере 1÷2 10-1 Па температура крышки 10 и температура мишени 4 составляет 450÷500°С. В установке используется твердотельный импульсный лазер Nd:YAG с длиной волны излучения 1,06 мкм, длительностью импульса 16 нс и частотой повторения импульсов 10 Гц. Плотность мощности лазерного излучения на поверхности мишени составляет 5·108÷8·108 Вт/см2. Лазерный луч падает на мишень 4, пройдя через оптическую систему 11 и кварцевое окно 12 вакуумной камеры 1. Распыляемый материал мишени 4 осаждается на крышку 10, вакуумную оболочку 6, отверстие для монтажа подложки 5 и выемку между отверстием для монтажа подложки в вакуумной оболочки и крышкой 13, в результате чего на крышке 10, отверстии для монтажа подложки 5 и выемке 13 при указанных выше технологических параметрах напыления вырастает пленка 14 ситалла СТ-50-1 примерно 1 мкм за 10 минут. В качестве мишени 4 используют ситалл СТ-50-1. В качестве материала крышки 10 и вакуумной оболочки 6 также используются ситалл СТ-50-1. Расстояние мишень-крышка составляет 8÷10 мм. Температура печи 2 и мишени 5 контролируется термопарой 15.

Измеренная методом отрыва адгезия пленки из ситалла к крышке и вакуумной оболочке из ситалла превышает 25 МПа. Кроме того, используемое расстояние мишень-подложка обеспечивает однородное напыление площадки диаметром не менее 10 мм, что достаточно для однородного покрытия щели между отверстием для монтажа подложки в вакуумной оболочке и крышкой, размер которого не превышает размер подложки для СКВИДа 10×10 мм. Достичь высокой степени адгезии пленки из ситалла с крышкой и вакуумной оболочкой из ситалла удается за счет использования технологии лазерного напыления, при котором разогретая до температур порядка 104 K плазма лазерного факела активно взаимодействует с поверхностью вакуумной оболочки и крышкой. На используемом расстоянии 8÷10 мм от мишени при давлении 10-1 Па температура плазмы составляет примерно 104 K, что приводит к реакции плазмы с поверхностью крышки и вакуумной оболочки и глубокому внедрению частиц ситалла в крышку и оболочку из ситалла на глубину до нескольких десятков микрометров, обеспечивая: эксплуатационную и механическую прочность, надежное вакуумирование, исключение деградации сверхпроводящих свойств автономного наноприбора.

Похожие патенты RU2555512C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ СКВИДов С СУБМИКРОННЫМИ ДЖОЗЕФСОНОВСКИМИ ПЕРЕХОДАМИ В ПЛЕНКЕ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА 2006
  • Волков Иван Александрович
  • Куприянов Михаил Юрьевич
  • Снигирев Олег Васильевич
RU2325005C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДЯЩЕГО ПЕРЕХОДА ДЖОЗЕФСОНА 1996
  • Балбашов Анатолий Михайлович
  • Венгрус Игорь Иванович
  • Снигирев Олег Васильевич
  • Ковьев Эрнст Константинович
  • Куприянов Михаил Юрьевич
  • Поляков Сергей Николаевич
  • Парсегов Игорь Юрьевич
RU2105390C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДЯЩЕГО ПЕРЕХОДА ДЖОЗЕФСОНА 1997
  • Алаудинов Багомед Магомедович
  • Ковьев Эрнст Константинович
  • Куприянов Михаил Юрьевич
  • Поляков Сергей Николаевич
RU2107358C1
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕРХПРОВОДНИКОВОГО ПРИБОРА 2005
  • Григорашвили Юрий Евгеньевич
  • Бухлин Александр Викторович
  • Мингазин Владислав Томасович
RU2298260C1
СПОСОБ ФОРМИРОВАНИЯ НА ПОДЛОЖКЕ МНОГОСЛОЙНЫХ СВЕРХПРОВОДЯЩИХ НАНОПЛЕНОК yBaCuO 2008
  • Скутин Анатолий Александрович
  • Югай Климентий Николаевич
  • Давлеткильдеев Надим Анварович
RU2382440C1
СПОСОБ ФОРМИРОВАНИЯ ПЕРИОДИЧЕСКИХ МИКРОСТРУКТУР НА ВТСП ПЛЕНКАХ С ДЖОЗЕФСОНОВСКИМИ СВОЙСТВАМИ 2004
  • Югай Климентий Николаевич
  • Серопян Геннадий Михайлович
  • Сычев Сергей Александрович
  • Муравьев Александр Борисович
  • Скутин Анатолий Александрович
  • Пашкевич Дмитрий Сергеевич
  • Семочкин Виктор Владимирович
RU2275714C1
СПОСОБ ИЗГОТОВЛЕНИЯ УСТРОЙСТВА С СУБМИКРОННЫМ ДЖОЗЕФСОНОВСКИМ π-КОНТАКТОМ 2015
  • Столяров Василий Сергеевич
RU2599904C1
СПОСОБ ФОРМИРОВАНИЯ СВЕРХПРОВОДЯЩЕЙ ТОНКОЙ ПЛЕНКИ, ИМЕЮЩЕЙ ОБЛАСТИ С РАЗЛИЧНЫМИ ЗНАЧЕНИЯМИ ПЛОТНОСТИ КРИТИЧЕСКОГО ТОКА 2008
  • Серопян Геннадий Михайлович
  • Захаров Александр Владимирович
  • Муравьев Александр Борисович
  • Югай Климентий Николаевич
  • Сычев Сергей Александрович
  • Скутин Анатолий Александрович
  • Давлеткильдеев Надим Анварович
  • Блинов Василий Иванович
RU2375789C1
ВЫСОКОЧАСТОТНЫЙ СВЕРХПРОВОДЯЩИЙ ЭЛЕМЕНТ ПАМЯТИ 2013
  • Куприянов Михаил Юрьевич
  • Бакурский Сергей Викторович
  • Кленов Николай Викторович
  • Соловьев Игорь Игоревич
  • Гудков Александр Львович
  • Рязанов Валерий Владимирович
RU2554612C2
СВЕРХПРОВОДНИКОВЫЙ ДЖОЗЕФСОНОВСКИЙ ПРИБОР С КОМПОЗИТНОЙ МАГНИТОАКТИВНОЙ ПРОСЛОЙКОЙ 2015
  • Овсянников Геннадий Александрович
  • Шадрин Антон Викторович
  • Кислинский Юлий Вячеславович
  • Константинян Карен Иванович
RU2598405C1

Иллюстрации к изобретению RU 2 555 512 C2

Реферат патента 2015 года САМООХЛАЖДАЕМЫЙ АВТОНОМНЫЙ НАНОПРИБОР И СПОСОБ ЕГО ФОРМИРОВАНИЯ

Изобретение относиться к способам формирования самоохлаждаемых автономных приборов и элементов электроники, которые могут эффективно работать без использования технологии жидкого азота, и другой криогенной техники. Способ формирования самоохлаждаемого автономного наноприбора заключается в том, что на подложке из монокристаллического материала с сформированным с одной стороны СКВИД-приемником на обратной стороне размещают устройство для поглощения тепла, которое содержит катод и анод, имеющие различную энергию Ферми электронов. Затем подложку через отверстие для монтажа заключают в вакуумную оболочку из ситалла, содержащую контактные электроды для двух сторон подложки. После этого отверстие для монтажа подложки закрывают крышкой из ситалла. Размещают данное устройство в вакуумной камере, в которой располагают также мишень из ситалла. Откачивают до давления 10-1 Па, нагревают мишень и крышку из ситалла до температуры 450÷500°С. Затем лазером с длиной волны излучения 1,06 мкм, длительностью импульса 10-20 нс и частотой повторения импульсов 10 Гц, плотностью мощности 5·108÷8·108 Вт/см2 распыляют мишень из ситалла, находящуюся на расстоянии 8÷10 мм от крышки из ситалла в течение 10 минут. Изобретение обеспечивает создание такой конструкции СКВИДа (сверхпроводящего квантового интерференционного датчика), в которой исключены: деградация сверхпроводящих свойств в воздушной среде, зависимость достижения рабочей температуры от использования жидкого азота или других внешних криогенных установок с большими габаритами. 1 ил.

Формула изобретения RU 2 555 512 C2

Способ формирования самоохлаждаемого автономного наноприбора, заключающийся в том, что на подложке из монокристаллического материала с сформированным с одной стороны СКВИД-приемником на обратной стороне размещают устройство для поглощения тепла, которое содержит катод и анод, имеющие различную энергию Ферми электронов, затем подложку через отверстие для монтажа заключают в вакуумную оболочку из ситалла, содержащую контактные электроды для двух сторон подложки, после этого отверстие для монтажа подложки закрывают крышкой из ситалла, размещают данное устройство в вакуумной камере, в которой располагают также мишень из ситалла, откачивают до давления 10-1 Па, нагревают мишень и крышку из ситалла до температуры 450÷500°C, затем лазером длиной волны 1,06 мкм, длительностью импульса 10-20 нс и частотой повторения импульсов 10 Гц, плотностью мощности 5·108÷8·108 Вт/см2 распыляют мишень из ситалла, находящуюся на расстоянии 8÷10 мм от крышки из ситалла в течение 10 минут.

Документы, цитированные в отчете о поиске Патент 2015 года RU2555512C2

СПОСОБ ИЗГОТОВЛЕНИЯ СКВИДов С СУБМИКРОННЫМИ ДЖОЗЕФСОНОВСКИМИ ПЕРЕХОДАМИ В ПЛЕНКЕ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА 2006
  • Волков Иван Александрович
  • Куприянов Михаил Юрьевич
  • Снигирев Олег Васильевич
RU2325005C1
УСТРОЙСТВО ДЛЯ ВЫДЕЛЕНИЯ ИЛИ ПОГЛОЩЕНИЯ ТЕПЛА 2008
  • Неволин Владимир Кириллович
RU2394306C2
СПОСОБ ОСУЩЕСТВЛЕНИЯ ГИПЕРПРОВОДИМОСТИ И СВЕРХТЕПЛОПРОВОДНОСТИ 2009
  • Вдовенков Вячеслав Андреевич
RU2497236C2
JP3032610B2, 17.10.2000
CN202015089U, 26.10.2011

RU 2 555 512 C2

Авторы

Кузин Александр Геннадьевич

Даты

2015-07-10Публикация

2013-11-13Подача