Изобретение относится к области медицинской техники и может быть использовано для дистанционного контроля параметров сердечной деятельности организма.
Известен способ исследования вегетативной дисфункции путем проведения кардиоинтервалографии и определения величины индекса напряжения регуляторных систем (ИН) при проведении пробы положения в виде максимального сгибания вперед головы и удержания ее в таком положении в течение 5 мин (Патент РФ №2237431, МПК А61В 5/0452).
Недостатком данного способа является контактность используемого метода электрокардиографии, длительность подготовки, недостаточное количество полезной информации на выходе.
Известен способ диагностики вегетативной дисфункции, включающий проведение кардиоинтервалографии путем регистрации у больного ЭКГ во II стандартном отведении с последующей математической обработкой ЭКГ, включающей измерение R-R-интервалов и расчет величины индекса напряжения регуляторных систем (ИН) в условных единицах (у.е.) по формуле Баевского с последующим проведением по величине ИН дифференциальной диагностики ваготонии, эйтонии и симпатикотонии. ЭКГ регистрируют трижды с интервалами 5 мин и каждый раз рассчитывают ИН (Патент РФ №2242923, МПК А61В 5/0452).
Недостатком данного способа является контактность используемого метода электрокардиографии, длительность подготовки, малое количество полезной информации на выходе.
Также известен способ диагностирования сердечно-сосудистой системы, в котором регистрируют кардиоинтервалы пациента, измеряют их длительность, образуют динамический ряд кардиоинтервалов, исключая из ряда экстрасистолы, формируют автокорреляционную функцию упомянутого ряда, осуществляют преобразование автокорреляционной функции в автокорреляционную матрицу и судят о состоянии сердечно-сосудистой системы пациента. Регистрацию кардиоинтервалов осуществляют путем снятия плетизмограммы пациента (Патент РФ №2442529, МПК А61В 5/0295, А61В 5/0452).
Недостатками вышеизложенного способа являются контактность используемого метода плетизмограммы, недостаточно выведенных коэффициентов для оценки работы сердечно-сосудистой системы.
Наиболее близким является способ дистанционного контроля физиологических параметров жизнедеятельности организма, включающий излучение электромагнитного сигнала, прием отраженного сигнала, перед определением параметров отраженный сигнал когерентно складывают с излучаемым электромагнитным сигналом, выделяют основную гармонику в спектре суммарного сигнала, по которой определяют частоту движения грудной клетки организма, а по максимальной величине амплитуд гармоник, входящих в спектр, определяют амплитуду движений грудной клетки организма вследствие сердцебиения и дыхания, по полученным параметрам судят о соответствии норме физиологических параметров жизнедеятельности организма (Патент РФ №2295911, МПК А61В 5/05).
Однако в данном способе вследствие невозможности задержки дыхания на большой промежуток времени не производится оценка параметров сердечного ритма ввиду трудностей, связанных с необходимостью исключить дыхательные движения, в частности индексов вариабельности сердечного ритма Баевского, для точного расчета которых требуется не менее 100 кардиоинтервалов; не производится восстановление формы сердечных сокращений.
Задача настоящего способа заключается в бесконтактном определении параметров вариабельности сердечного ритма, фиксации формы сердечных сокращений большого количества кардиоинтервалов.
Технический результат, достигаемый заявляемым решением, заключается в снижении погрешности измерения за счет исключения из регистрируемого сигнала влияния дыхания.
Поставленная задача достигается тем, что способ дистанционного контроля параметров сердечной деятельности организма включает излучение электромагнитного СВЧ-сигнала, прием интерференционного сигнала, являющегося суммой падающего и отраженного электромагнитного излучения, определение параметров жизнедеятельности организма, согласно решению излучаемый электромагнитный СВЧ-сигнал направляют на область расположения плечевой артерии, интерференционный сигнал представляют в виде U(t)=cos(θ+(4π/λ)f(t)), где t - время, θ - начальная фаза сигнала, λ - длина волны излучаемого электромагнитного СВЧ-сигнала, f(t) - функция движения плечевой артерии; вводят функцию S(t) такую, что ее спектр с точностью до постоянного множителя соответствует спектру функции движения плечевой артерии:
где С(а,b) - коэффициенты вейвлет-разложения функции f(t) по базису ψ1, определяемые с помощью соотношения:
a - коэффициент масштабирования; b - коэффициент сдвига; ψ2 - производная от базисной вейвлет-функции ψ1; восстанавливают функцию движения плечевой артерии:
по функции движения плечевой артерии рассчитывают параметры вариабельности сердечного ритма: Мо - наиболее часто встречаемое значение R-R-интервалов; АМо - доля кардиоинтервалов, соответствующих значению Мо; dx - разность между длительностью наибольшего и наименьшего кардиоинтервалов; ИН=АМо/(2∗Мо∗dx) - индекс напряжения регуляторный систем; ИВР=Амо/dx - индекс вегетативного равновесия; ВПР=1/(Мо∗dx) - вегетативный показатель ритма; ПАПР=Амо/Мо - показатель адекватности процессов регуляции.
Предлагаемый способ поясняется чертежами, где на фиг.1 приведена блок-схема радиоволнового автодина на диоде Ганна, позволяющего реализовать заявляемый способ. На фиг.2 представлено сравнение нормированной функции движения плечевой артерии f(t) и ЭКГ со II отведения.
Позициями на чертеже обозначены:
1 - СВЧ-датчик;
2 - генератор;
3 - приемник;
4 - источник питания;
5 - аналого-цифровой преобразователь;
6 - компьютер;
7 - рупорная антенна;
8 - обследуемый организм.
Способ заключается в следующем.
Предлагаемый способ дистанционного контроля параметров сердечной деятельности организма включает излучение электромагнитного сигнала, прием отраженного сигнала, который когерентно складывается с излучаемым электромагнитным сигналом, восстановление формы движения участка тела человека, где ближе всего к поверхности расположена плечевая артерия, связанного с сердцебиением, определение параметров сердечной деятельности организма путем расчета индексов вариабельности сердечного ритма по Баевскому, по которым судят о состоянии сердечной деятельности человека.
Излучение электромагнитного сигнала с помощью СВЧ-генератора 2 (фиг.1) через рупорную антенну 7 направляют на область локтя человека 8. Отраженное излучение принимают через ту же рупорную антенну и когерентно складывают с излученным электромагнитным сигналом. Суммарный интерференционный сигнал выбирают в качестве информативного сигнала. Результат сложения - информативный сигнал - выделяют с помощью детектора 3 и подают на аналого-цифровой преобразователь 5 для последующей его цифровой обработки на компьютере 6. Полученный сигнал очищают от шумов и восстанавливают содержащуюся в нем форму пульсовой волны.
Теоретическое обоснование методики измерений.
В основу метода контроля периодических движений области руки, где ближе всего к поверхности расположена плечевая артерия, вследствие сердечных сокращений с помощью автодина на диоде Ганна положена зависимость изменения режима его работы под действием СВЧ-сигнала, отраженного от области руки. Для направленного зондирования живого объекта СВЧ-датчик снабжался рупорной антенной. Конструктивно-измерительный прибор состоит из выносного датчика с рупором и цифрового блока индикации, соединенных между собой кабелем. Измерительный датчик представляет собой волноводную секцию (сечение канала 23÷10 мм2). В качестве активного элемента использовался диод типа 3А723, помещенный в зазор стержневого держателя. Частота и мощность СВЧ-генератора могла перестраиваться в результате перемещения поршня и изменения питающего напряжения на диоде Ганна. В блоке индикации измерительного прибора проводится обработка сигнала СВЧ-генератора и отображение информации в аналоговой или цифровой форме. Предусмотрена возможность подключения к блоку индикации осциллографического индикатора, анализатора спектра сигнала механических колебаний, и имеется возможность сопряжения прибора с микро-ЭВМ. Блок схема радиоволнового автодина на диоде Ганна представлена на фиг.1.
Для восстановления формы сложного непериодического движения отражателя использовалась методика, основанная на одновременном измерении интерференционного сигнала и его производной.
Переменная составляющая интерференционного сигнала имеет вид:
где A - амплитудный коэффициент, определяемый амплитудами токов, t - время, θ - начальная фаза сигнала, λ - длина волны зондирующего излучения, f(t) - функция, характеризующая продольные движения объекта.
Далее мы будем рассматривать нормированную переменную составляющую интерференционного сигнала:
Функция, характеризующая продольные движения объекта, может быть представлена в виде:
Здесь ψ1 - базисная вейвлет-функция, C(a,b) - коэффициенты вейвлет-разложения функции f(t) по базису ψ1, определяемые с помощью соотношения:
Функция S(t) выбрана таким образом, чтобы ее спектр с точностью до постоянного множителя соответствовал спектру восстанавливаемого сигнала:
Запишем ее с учетом выражения для нормированной составляющей интерференционного сигнала:
где ψ2 - производная от базисной вейвлет-функции ψ1.
Имеет смысл в дальнейшем рассматривать только такие вейвлет-функции ψ1(t), у которых существует производная, в свою очередь являющаяся вейвлетом. В данной работе использовались вейвлет-функция МНАТ, имеющая вид:
Сравнивая интегральные представления функций f(t) и S(t) (выражения (1) и (3) соответственно), можно увидеть, что они отличаются базисной вейвлет-функцией и постоянной величиной
Затем, используя полученные вейвлет-коэффициенты, выполним обратное преобразование, используя базис ψ1:
Для оценки адекватности данной методики одновременно с измерениями формы движения области руки радиоволновым методом производилась фиксация электрокардиограммы испытуемого.
Рассчитывались параметры вариабельности сердечного ритма: Мо - наиболее часто встречаемое значение R-R-интервалов; АМо - доля кардиоинтервалов, соответствующих значению Мо; dx - разность между длительностью наибольшего и наименьшего кардиоинтервалов;
Результаты, полученные по вышеизложенной методике, а именно значения вариабельности сердечного ритма, а также аналогичные значения, рассчитанные по электрокардиограмме, представлены в таблице, а также рассчитаны относительные отклонения этих параметров. Таблица иллюстрирует соответствие результатов, полученных предложенным бесконтактным способом, с результатами, рассчитанными по ЭКГ, полученными контактным способом.
интервалов
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ПУЛЬСОВОЙ ВОЛНЫ ДИСТАНЦИОННЫМ МЕТОДОМ | 2013 |
|
RU2562446C2 |
СПОСОБ АНАЛИЗА ВАРИАБЕЛЬНОСТИ СЕРДЕЧНОГО РИТМА | 2007 |
|
RU2356495C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ЧЕЛОВЕКА | 2004 |
|
RU2289301C2 |
СПОСОБ ИССЛЕДОВАНИЯ ВАРИАБЕЛЬНОСТИ СЕРДЕЧНОГО РИТМА У ДЕТЕЙ | 2003 |
|
RU2241374C2 |
СПОСОБ ДИСТАНЦИОННОГО КОНТРОЛЯ ДВИЖЕНИЯ ПОВЕРХНОСТИ ОБЪЕКТА | 2017 |
|
RU2656532C1 |
СПОСОБ ДИАГНОСТИРОВАНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ | 2010 |
|
RU2442529C1 |
СПОСОБ ЛЕЧЕНИЯ БОЛЕЗНИ ЛАЙМА С ПОРАЖЕНИЕМ НЕРВНОЙ СИСТЕМЫ | 2001 |
|
RU2201742C1 |
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ОЦЕНКИ СОСТОЯНИЯ ПЛОДА | 2004 |
|
RU2271737C2 |
СПОСОБ КОРРЕКЦИИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ОРГАНИЗМА | 2010 |
|
RU2432972C1 |
СПОСОБ ИССЛЕДОВАНИЯ КРИВЫХ СУТОЧНОГО МОНИТОРИНГА АРТЕРИАЛЬНОГО ДАВЛЕНИЯ ЧЕЛОВЕКА | 2010 |
|
RU2465822C2 |
Изобретение относится к области медицинской техники и может быть использовано для дистанционного контроля параметров сердечной деятельности организма. Способ заключается в излучении электромагнитного СВЧ-сигнала, приеме интерференционного сигнала, являющегося суммой падающего и отраженного электромагнитного излучения, определении параметров жизнедеятельности организма. При этом излучаемый электромагнитный СВЧ-сигнал направляют на область расположения плечевой артерии, интерференционный сигнал представляют в виде U(t)=cos(θ+(4π/λ)f(t)), где t - время, θ - начальная фаза сигнала, λ - длина волны излучаемого электромагнитного СВЧ-сигнала, f(t) - функция движения плечевой артерии, после чего вводят функцию S(t) - такую, что ее спектр с точностью до постоянного множителя соответствует спектру функции движения плечевой артерии:
Способ дистанционного контроля параметров сердечной деятельности организма, включающий излучение электромагнитного СВЧ-сигнала, прием интерференционного сигнала, являющегося суммой падающего и отраженного электромагнитного излучения, определение параметров жизнедеятельности организма, отличающийся тем, что излучаемый электромагнитный СВЧ-сигнал направляют на область расположения плечевой артерии, интерференционный сигнал представляют в виде U(t)=cos(θ+(4π/λ)f(t)), где t - время, θ - начальная фаза сигнала, λ - длина волны излучаемого электромагнитного СВЧ-сигнала, f(t) - функция движения плечевой артерии; вводят функцию S(t) такую, что ее спектр с точностью до постоянного множителя соответствует спектру функции движения плечевой артерии:
где C(a,b) - коэффициенты вейвлет-разложения функции f(t) по базису ψ1, определяемые с помощью соотношения:
a - коэффициент масштабирования; b - коэффициент сдвига; ψ2 - производная от базисной вейвлет-функции ψ1; восстанавливают функцию движения плечевой артерии:
по функции движения плечевой артерии рассчитывают параметры вариабельности сердечного ритма: Мо - наиболее часто встречаемое значение R-R-интервалов; АМо - доля кардиоинтервалов, соответствующих значению Мо, dx - разность между длительностью наибольшего и наименьшего кардиоинтервалов; ИН=АМо/(2∗Мо∗dx) - индекс напряжения регуляторный систем; ИВР=Амо/dx - индекс вегетативного равновесия; ВПР=1/(Мо∗dx) - вегетативный показатель ритма; ПАПР=Амо/Мо - показатель адекватности процессов регуляции.
СПОСОБ ДИСТАНЦИОННОГО КОНТРОЛЯ ФИЗИОЛОГИЧЕСКИХ ПАРАМЕТРОВ ЖИЗНЕДЕЯТЕЛЬНОСТИ ОРГАНИЗМА | 2005 |
|
RU2295911C1 |
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО БЕСКОНТАКТНОГО МОНИТОРИНГА ПАРАМЕТРОВ ЖИЗНЕДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА | 2010 |
|
RU2462990C2 |
RU 2008105888 A, 27.08.2009 | |||
СПОСОБ МОНИТОРИНГА ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ЧЕЛОВЕКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2327415C1 |
СПОСОБ МОНИТОРИНГА ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ЧЕЛОВЕКА | 2003 |
|
RU2258455C2 |
US 200927877 A1, 10.09.2009 | |||
US 2005249037 A1, 10.11.2005 | |||
US 2008167535 A1, 10.07.2008 | |||
М.Д.Алехин и др | |||
Методы взаимного корреляционно-спектрального анализа в сравнении данных биорадиолокации и респираторной |
Авторы
Даты
2015-08-20—Публикация
2013-06-06—Подача