Заявляемое техническое решение относится к области ракетно-космической техники, а именно к области проектирования и эксплуатации двигательных установок (ДУ) космических аппаратов (КА) и разгонных блоков, предназначенных для обеспечения выдачи импульсов тяг КА по шести степеням свободы, необходимых для довыведения полезной нагрузки на расчетную орбиту, коррекции этой орбиты в процессе орбитального полета, ориентации КА по отношению к Земле и звездам, а также для придания КА тормозного импульса при спуске с орбиты.
Известна жидкостная двигательная установка ДУ-802 автономного космического буксира «Кречет» (статья А.В. Дибривного «Результаты отработки системы обеспечения синхронизации выработки топлива из баков двигательной установки ДУ-802 космического буксира» // Авиационно-космическая техника и технология, 2008, №10. - с.88, рис. 1;
http://www.nbuv.gov.ua/portal/natural/AkTT/2008_10/Dibrivn.pdf - аналог), содержащая топливные баки горючего и окислителя, баллоны высокого давления, жидкостные реактивные двигатели (ЖРД) малой тяги (МТ), агрегаты автоматики, соединенные между собой гидравлическими и пневматическими трубопроводами.
Недостатком вышеописанной жидкостной двигательной установки является низкая надежность из-за затруднения выполнения маневра при выходе из строя хотя бы одного двигателя малой тяги: отсутствие дублирования двигателей ориентации и корректирующе-тормозного двигателя (КТД) (он однокамерный); большая масса: восемь двигателей ориентации, восемь мест их крепления, восемь комплектов подводящих трубопроводов, наличие пневмонасосного агрегата подачи компонентов топлива, необходимость дополнительного запаса сжатого газа для работы турбины этого агрегата.
Известен отсек жидкостной ракетной двигательной установки космического аппарата (патент RU №2059858 МПК F02K 9/00 - аналог), содержащий топливные баки с металлическими перегородками, магистрали подачи топлива, шар-баллон системы вытеснения топлива, двигатели стабилизации и коррекции орбиты аппарата.
Известна комплексная двигательная установка для аппаратов типа «Ресурс» (книга «Конструирование автоматических космических аппаратов» под редакцией чл. - корр. РАН Д.И. Козлова, Москва, Машиностроение, 1996, стр. 423, рис. 9.3 - прототип), включающая топливные баки, дроссели в системе подачи топлива, шар-баллоны, сигнализаторы давления, обратные клапаны, электропневмоклапаны (ЭПК) и электрожидкостные клапаны (ЭЖК), заправочные горловины, корректирующе-тормозной двигатель, блоки управляющих ЖРД МТ, систему трубопроводов.
Недостатком известной комплексной двигательной установки является большая масса в результате применения шестнадцати ЖРД МТ (четыре места крепления блоков двигателей), сложная многоагрегатная пневмогидравлическая система, с промежуточной системой подачи топлива через гидроаккумулятор с дополнительным шар-баллоном для хранения газа высокого давления. В данной ДУ применен неподвижно закрепленный однокамерный КТД, который невозможно использовать для управления вектором тяги, и, как следствие, требует применения управляющих двигателей повышенной тяги, что приводит к увеличению расхода топлива через них, то есть к увеличению массы топлива на борту КА.
Общими недостатками вышеописанных устройств (аналогов) и известной установки (прототипа) является низкая надежность из-за отсутствия защиты баков от разрушения при повышении давления в результате температурных колебаний при хранении, транспортировании и эксплуатации, отсутствия дублирования системы корректирующе-тормозного двигателя и невозможности управления вектором тяги корректирующе-тормозного двигателя без специальных приводов, а также редукторный наддув газовых полостей топливных баков, который не обеспечивает высокую степень герметичности по газу наддува, что приводит к постоянному росту давления в газовых полостях топливных баков и необходимости сбрасывания этих излишков газа через специальные предохранительные клапаны за борт КА, что не позволяет использовать такую схему для длительных орбитальных полетов.
Задачей заявляемого технического решения является повышение надежности работы при длительном сроке эксплуатации, снижение массы системы выдачи импульсов тяг (СВИТ), а также улучшение управляемости полетом КА.
Технический результат достигается тем, что СВИТ, включающая в себя систему управления, баки сферической формы с деформируемыми металлическими перегородками, разделяющими топливные и газовые полости, шар-баллоны, заправочные горловины, блоки управляющих жидкостных реактивных двигателей малой тяги, корректирующе-тормозной двигатель, дроссели, электропневмоклапаны, электрожидкостные и обратные клапаны, сигнализаторы давления, магистрали подачи топлива и наддува, причем система выдачи импульсов тяг дополнительно снабжена герметичными упругими разделителями среды, соединяющими выходные трубопроводы топливных полостей баков окислителя и горючего с трубопроводами, объединяющими газовые полости баков, и их жесткость меньше жесткости деформируемых металлических перегородок баков, а корректирующе-тормозной двигатель совместно с тремя дополнительно введенными собраны в блок, установленный на продольной оси космического аппарата, при этом управляющие жидкостные реактивные двигатели малой тяги объединены в четыре блока по три штуки, причем в каждом блоке два двигателя установлены с диаметрально противоположным направлением вектора тяги в плоскости, перпендикулярной продольной оси космического аппарата, а вектор тяги третьего двигателя, установленного в плоскости продольной оси космического аппарата, направлен в сторону, противоположную направлению полета, при этом блоки управляющих жидкостных реактивных двигателей малой тяги попарно закреплены в диаметрально противоположных местах космического аппарата, а в магистралях подачи компонентов топлива к основным коллекторам управляющих жидкостных реактивных двигателей малой тяги и к коллекторам корректирующе-тормозных двигателей установлены четыре пары параллельно соединенных между собой электрожидкостных клапанов.
Предложенное техническое решение поясняется чертежами, где на фиг.1 приведена принципиальная пневмогидравлическая схема СВИТ, на фиг.2 изображена система управляющих ЖРД МТ и КТД СВИТ, на фиг.3 - представлена система управляющих ЖРД МТ и КТД прототипа.
Устройство СВИТ (фиг.1) содержит систему управления 1 (на фигурах условно не показана), четыре бака 2 сферической формы для хранения жидких компонентов топлива с деформируемыми металлическими перегородками 3, предназначенными для разделения топливной 4 и газовой 5 полостей, заправочные горловины 6 окислителя и горючего, проверочные штуцеры 7, предназначенные для проверки агрегатов по магистрали 8 окислителя и магистрали 9 горючего, герметичные упругие разделители среды 10, например, сильфонные гидрокомпенсаторы, через которые топливные полости 4 баков 2 окислителя и горючего выходными трубопроводами 11 соединены с трубопроводами 12, объединяющими газовые полости 5 баков 2, дроссели 13, установленные на выходе из баков 2 в магистралях 8 и 9 подачи компонентов топлива для обеспечения равенства расходов, потребляемых из обоих баков 2 горючего или окислителя, необходимого для сохранения центровки КА, шар-баллоны 14 для хранения газа наддува, зарядные горловины 15 газа наддува, проверочную горловину 16, предназначенную для проверки агрегатов по линии магистрали 17 наддува, пироклапаны 18, электропневмоклапаны 19, дроссельные устройства 20, обратные клапаны 21 системы наддува, мембраны прорыва 22, установленные в магистралях 8 и 9, мембрана прорыва 23, установленная в магистрали 17, сигнализаторы 24 и датчики 25 давления, фильтры 26 для обеспечения чистоты жидких компонентов топлива и газа наддува, блок 27 из четырех КТД 28, 29, 30 и 31, установленный на продольной оси 32 КА, две пары блоков 33 и 34 по три управляющих ЖРД МТ 35, 36, 37 в каждом, закрепленные попарно в двух диаметрально противоположных местах КА (фиг.2), при этом в каждом блоке установлены два двигателя на одной оси 38 с диаметрально противоположным направлением вектора тяги в плоскости, перпендикулярной продольной оси 32 КА, а ось 39 третьего двигателя лежит в плоскости продольной оси 32 КА, и вектор тяги его направлен в сторону, противоположную направлению полета КА. Блоки 33 и 34 управляющих ЖРД МТ задублированы: к одной (основной) паре блоков 33 подключены основные коллекторы 40 горючего и окислителя, к другой паре блоков 34 - дублирующие коллекторы 41. В магистралях 8 и 9 подачи компонентов топлива к основным коллекторам 40 управляющих ЖРД МТ 35, 36, 37 и коллекторам 42 КТД 28, 29, 30, 31 установлены четыре пары параллельно соединенных между собой электрожидкостных клапана 43, а в магистралях подачи компонентов топлива к дублирующим коллекторам 41 управляющих ЖРД МТ 35, 36, 37 установлены по одному ЭЖК 44. В состав каждого управляющего ЖРД МТ 35, 36, 37 и КТД 28, 29, 30, 31 входят собственные ЭЖК 45, расположенные непосредственно перед камерами сгорания.
Работа СВИТ осуществляется следующим образом.
В процессе хранения, транспортирования и эксплуатации, до выхода КА на опорную орбиту, мембраны прорыва 22 обеспечивают ампулизацию баков 2, в топливных полостях 4 которых в результате температурных колебаний при хранении происходит изменение объемов жидких компонентов топлива, при этом компенсация расширения (сжатия) массы жидкости в замкнутом объеме баков 2 происходит с помощью изменения объемов за счет герметичных упругих разделителей среды 10, жесткость которых меньше жесткости деформируемых металлических перегородок 3 топливных баков 2, например, за счет перемещения сильфонов в сильфонных гидрокомпенсаторах.
После вывода КА ракетой-носителем на опорную орбиту система управления 1 КА (или разгонного блока) подает команду на срабатывание пироклапанов 18 и ЭПК 19, после чего газ наддува из шар-баллонов 14 поступает в магистраль 17 наддува, проходит через дроссельные устройства 20, которые в результате дросселирования ограничивают расход газа наддува, обеспечивая заданную скорость нарастания давления в газовых полостях 5 баков 2. В процессе нарастания давления за дроссельными устройствами 20 газ наддува разрывает мембрану прорыва 23 и заполняет газовые полости 5 баков 2, воздействуя своим давлением через деформируемые металлические перегородки 3 на жидкие компоненты топлива в топливных полостях 4. При этом давление в топливных полостях 4 баков 2 повышается, в результате чего происходит разрыв мембран прорыва 22 и жидкие компоненты топлива заполняют магистраль 8 окислителя и магистраль 9 горючего, давление в которых повышается синхронно, что позволяет установить сигнализаторы 24 давления топлива в одной из магистралей (в нашем случае в магистрали 9 горючего). При достижении в магистрали 9 горючего наибольшего допустимого давления сигнализатор 24 давления выдает об этом сигнал в систему управления 1, от которой поступает команда на закрытие электропневмоклапанов 19, после чего СВИТ готова к работе.
После получения команды от системы управления 1 на выдачу определенных тяговых импульсов для ориентации КА на орбите или для коррекции орбиты (увеличения или уменьшения ее высоты) открываются парные ЭЖК 43 основных коллекторов 40 или коллекторов 42 (каждый второй из параллельно установленных ЭЖК работает в «горячем» резерве, то есть для нормальной работы системы достаточно срабатывания одного из двух ЭЖК 43), - таким образом обеспечивается надежная подача топлива на управляющие ЖРД МТ 35, 36, 37 и КТД 28, 29, 30, 31, при срабатывании собственных ЭЖК 45 которых горючее и окислитель впрыскиваются в камеры сгорания, самовоспламеняются и дают тяговые импульсы в требуемом направлении за счет реактивной струи продуктов сгорания, вытекающей из сопел соответствующих двигателей. Установка парных ЭЖК 43 на входе в основные коллекторы 40 и коллекторы 42 повышает надежность работы камер ЖРД МТ 35, 36, 37 и КТД 28, 29, 30, 31 при длительной эксплуатации КА на орбите, так как на время «дрейфа» двигателей они отключают ЭЖК 45 от действия давления топлива, которое при их негерметичности может приводить к несанкционированному натеканию и замораживанию компонентов топлива в камерах сгорания и выходу управляющих ЖРД МТ 35, 36, 37 или КТД 28, 29, 30, 31 из строя.
При расходе топлива объем топливных полостей 4 уменьшается, под действием давления газа наддува металлические перегородки 3 прогибаются, объем в газовых полостях 5 баков 2 увеличивается и давление в них уменьшается. При снижении указанного давления до наименьшего допустимого давления работы двигателей срабатывает сигнализатор 24 давления и через систему управления 1 подается команда на открытие электропневмоклапанов 19, после чего газ из шар-баллонов 14 начинает поступать в газовые полости 5 баков 2, поднимая в них давление до наибольшего допустимого давления работы двигателей, то есть цикл поддержания рабочего давления в баках 2 повторяется до окончания работы (потребления топлива) двигателей, которые могут работать в длительных режимах (при коррекции орбиты КА) или в импульсных режимах (для ориентации КА на орбите). После завершения маневра КА, от системы управления 1 поступает команда на прекращение работы двигателей, ЭЖК45, закрываются, прекращая подачу топлива к двигателям, затем закрываются и ЭЖК 43, прекращая подачу топлива в основные коллекторы 40 и коллекторы 42.
При необходимости, подача или прекращение подачи топлива в дублирующие коллекторы 41 производится посредством ЭЖК 44.
В отличие от прототипа (фиг.3), где тяговые импульсы для обеспечения ориентации КА (крена, тангажа или рыскания) создаются с помощью восьми (основных) ЖРД МТ, закрепленных в четырех взаимно-противоположных точках КА, в предложенном устройстве СВИТ (фиг.2) эти же операции выполняются посредством шести (основных) управляющих ЖРД МТ, размещенных по три штуки в блоках, закрепленных в двух взаимно противоположных точках КА или самими КТД.
Для прототипа (фиг.3): 46, 47, 48, 49, 50, 51, 52, 53 - управляющие ЖРД; 54 КТД.
Управление КА осуществляется включением управляющих ЖРД:
- управление по тангажу: 50, (вверх); 46, (вниз);
- управление по рысканию: 52 (вправо); 48 (влево);
- управление по крену: 49 и 53 (по часовой стрелке); 47 и 51 (против часовой стрелки).
Для СВИТ (фиг.2): 35, 36, 37, 55, 56, 57 - управляющие ЖРД МТ; 28, 29, 30 и 31 - КТД.
Управление КА осуществляется включением управляющих ЖРД МТ:
- управление по тангажу: 57 (вверх); 37 (вниз);
- управление по рысканию: 36 и 56 (вправо); 35 и 55 (влево);
- управление по крену: 35 и 56 (по часовой стрелке); 36 и 55 (против часовой стрелки).
Так же управление по тангажу и рысканию может осуществляться попарным включением КТД:
- управление по тангажу: 30 и 31 (вверх); 28 и 29 (вниз);
- управление по рысканию: 28 и 31 (вправо); 29 и 30 (влево).
При этом использование четырех КТД 28, 29, 30, 31 (на СВИТ) вместо одного более крупного (у прототипа) повышает надежность работы СВИТ, так как при выходе из строя одного КТД у прототипа ведет к прекращению функционирования КА, а при выходе из строя одного КТД из четырех в предлагаемом техническом решении не приведет к прекращению функционирования КА, так как, отключив КТД, диаметрально противоположный аварийному, можно продолжить работу КА на двух оставшихся КТД.
Для обеспечения надежной работы в процессе хранения, транспортирования и эксплуатации СВИТ снабжена герметичными упругими разделителями среды, позволяющими снять дополнительные увеличения (уменьшения) давления в баках 2 и тем самым предотвратить разрушение стенок баков в результате температурных колебаний.
Для обеспечения надежного длительного орбитального полета, при котором происходят многократные срабатывания управляющих ЖРД МТ 35, 36, 37, применено дублирование ЭЖК 43 в системе подачи топлива, а также установлено две пары блоков 33, 34 по три управляющих ЖРД МТ 35, 36, 37, при этом каждая пара крепится на своем кронштейне - два диаметрально противоположных места крепления, что ведет к снижению массы системы.
Таким образом, заявленная конструкция позволяет обеспечить повышение надежности работы при длительном сроке эксплуатации, снижение массы СВИТ, а также улучшение управляемости полетом КА.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА ПОДАЧИ ТОПЛИВА ДВИГАТЕЛЬНОЙ УСТАНОВКИ КОСМИЧЕСКОГО АППАРАТА | 2013 |
|
RU2533592C1 |
МОДУЛЬНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА МАЛОЙ ТЯГИ | 2014 |
|
RU2563923C1 |
СПОСОБ УВОДА ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ РАКЕТЫ-НОСИТЕЛЯ С ОРБИТЫ ПОЛЕЗНОЙ НАГРУЗКИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2482034C1 |
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ | 2015 |
|
RU2603305C1 |
ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА | 1991 |
|
RU2121071C1 |
РАКЕТА-НОСИТЕЛЬ, ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ И СПОСОБ ЕЕ ЗАПУСКА ПРИ ВОЗВРАЩЕНИИ И СИСТЕМА ВЕРТОЛЕТНОГО ПОДХВАТА ВОЗВРАЩАЕМОЙ СТУПЕНИ | 2015 |
|
RU2609539C1 |
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ И СПОСОБ ЕЕ РАБОТЫ | 2015 |
|
RU2609547C1 |
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ И СПОСОБ ЕЕ РАБОТЫ | 2015 |
|
RU2609549C1 |
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ, СПОСОБ ЕЕ РАБОТЫ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2015 |
|
RU2609664C1 |
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ, СПОСОБ ЕЕ РАБОТЫ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2015 |
|
RU2602656C1 |
Изобретение относится к области ракетно-космической техники, а именно к области проектирования и эксплуатации двигательных установок космических аппаратов и разгонных блоков, предназначенных для обеспечения выдачи импульсов тяг космического аппарата по шести степеням свободы. Система содержит систему управления, баки сферической формы с деформируемыми металлическими перегородками, разделяющими топливные и газовые полости, шар-баллоны, заправочные горловины, блоки управляющих жидкостных реактивных двигателей малой тяги, корректирующе-тормозной двигатель, дроссели, электропневмоклапаны, электрожидкостные и обратные клапаны, сигнализаторы давления, магистрали подачи топлива и наддува, при этом система дополнительно снабжена герметичными упругими разделителями среды, соединяющими выходные трубопроводы топливных полостей баков окислителя и горючего с трубопроводами, объединяющими газовые полости баков, и их жесткость меньше жесткости деформируемых металлических перегородок баков, а корректирующе-тормозной двигатель совместно с тремя дополнительно введенными собраны в блок, установленный на продольной оси космического аппарата, при этом управляющие жидкостные реактивные двигатели малой тяги объединены в четыре блока по три штуки, причем в каждом блоке два двигателя установлены с диаметрально противоположным направлением вектора тяги в плоскости, перпендикулярной продольной оси космического аппарата, а вектор тяги третьего двигателя, установленного в плоскости продольной оси космического аппарата, направлен в сторону, противоположную направлению полета, при этом блоки управляющих жидкостных реактивных двигателей малой тяги попарно закреплены в диаметрально противоположных местах космического аппарата, а в магистралях подачи компонентов топлива к основным коллекторам управляющих жидкостных реактивных двигателей малой тяги и к коллекторам корректирующе-тормозных двигателей установлены четыре пары параллельно соединенных между собой электрожидкостных клапанов. Изобретение обеспечивает повышение надежности работы системы выдачи импульсов тяг при длительном сроке эксплуатации, снижение ее массы, а также улучшение управляемости полетом космического аппарата. 3 ил.
Система выдачи импульсов тяг, содержащая систему управления, баки сферической формы с деформируемыми металлическими перегородками, разделяющими топливные и газовые полости, шар-баллоны, заправочные горловины, блоки управляющих жидкостных реактивных двигателей малой тяги, корректирующе-тормозной двигатель, дроссели, электропневмоклапаны, электрожидкостные и обратные клапаны, сигнализаторы давления, магистрали подачи топлива и наддува, отличающаяся тем, что система дополнительно снабжена герметичными упругими разделителями среды, соединяющими выходные трубопроводы топливных полостей баков окислителя и горючего с трубопроводами, объединяющими газовые полости баков, и их жесткость меньше жесткости деформируемых металлических перегородок баков, а корректирующе-тормозной двигатель совместно с тремя дополнительно введенными собраны в блок, установленный на продольной оси космического аппарата, при этом управляющие жидкостные реактивные двигатели малой тяги объединены в четыре блока по три штуки, причем в каждом блоке два двигателя установлены с диаметрально противоположным направлением вектора тяги в плоскости, перпендикулярной продольной оси космического аппарата, а вектор тяги третьего двигателя, установленного в плоскости продольной оси космического аппарата, направлен в сторону, противоположную направлению полета, при этом блоки управляющих жидкостных реактивных двигателей малой тяги попарно закреплены в диаметрально противоположных местах космического аппарата, а в магистралях подачи компонентов топлива к основным коллекторам управляющих жидкостных реактивных двигателей малой тяги и к коллекторам корректирующе-тормозных двигателей установлены четыре пары параллельно соединенных между собой электрожидкостных клапанов.
"Конструирование автоматических космических аппаратов", под ред.члена-корр | |||
РАН Козлова Д.Н., М., Машиностроение, 1996, с.423 рис.9.3 | |||
СПОСОБ ВЫКЛЮЧЕНИЯ ЖИДКОСТНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ СОСТАВНОЙ РАКЕТЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2079690C1 |
СПОСОБ РЕГУЛИРОВАНИЯ ТЯГИ РАКЕТНОГО ДВИГАТЕЛЯ | 2002 |
|
RU2213878C1 |
РАКЕТА-НОСИТЕЛЬ, ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ И БЛОК СОПЕЛ КРЕНА | 2011 |
|
RU2459971C1 |
ЖИДКОСТНАЯ РАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА | 1992 |
|
RU2040703C1 |
Способ и система для контроля состояния группы установок | 2013 |
|
RU2636095C2 |
US 5027597 A, 02.07.1991 |
Авторы
Даты
2015-08-20—Публикация
2014-07-03—Подача