СИСТЕМА, РАБОТАЮЩАЯ ПО ЦИКЛУ РЕНКИНА, И СООТВЕТСТВУЮЩИЙ СПОСОБ Российский патент 2015 года по МПК F01K7/00 

Описание патента на изобретение RU2561346C2

[0001] Изобретение относится в целом к системам, работающим по циклу Ренкина, и, более конкретно, к системе, работающей по циклу Ренкина с двойным перегревом пара, и соответствующему способу.

[0002] Приближение к достижению многих энергетических требований может быть осуществлено путем использования энергетических установок, которые вырабатывают недорогую энергию при минимальном воздействии на окружающую среду и могут быть легко встроены в существующие энергетические сети или быстро установлены в качестве автономных узлов. Двигатели внутреннего сгорания, такие как микротурбины или поршневые двигатели, генерируют недорогую электроэнергию с использованием доступных видов топлива, таких как бензин, природный газ и дизельное топливо. Однако при этом образуются атмосферные выбросы, например окислы азота (NOx), и твердые частицы.

[0003] Один из способов генерации электроэнергии из отработанного тепла двигателя внутреннего сгорания без увеличения расхода топлива или выбросов в окружающую среду заключается в использовании цикла насыщения. В циклах насыщения используется отработанное тепло от источника тепла, такого как двигатель, и происходит превращение этой тепловой энергии в электричество. Циклы Ренкина часто используются в качестве цикла насыщения для источника тепла. Циклы Ренкина также используются для получения энергии от геотермальных или промышленных источников отработанного тепла. Фундаментальный органический цикл Ренкина содержит турбогенератор, подогреватель/паровой котел, конденсатор и гидравлический насос.

[0004] Такой цикл может принимать отработанное тепло при повышенных температурах (например, выше точки кипения рабочей текучей среды, циркулирующей в цикле) и обычно отдает тепло при пониженной температуре в окружающий воздух или воду. Температурный диапазон и характеристики тепловой эффективности цикла определяются выбором рабочей текучей среды.

[0005] В одной обычной системе для высокотемпературных установок больших размеров, работающей по циклу Ренкина, в качестве рабочей текучей среды используется пар. Пар может нагреваться до повышенных температур и захватывать дополнительную часть энергии выхлопа, при этом не происходит его химического разрушения. С другой стороны, пар создает большие трудности вследствие его тенденции к подверганию компонентов цикла коррозии, а также из-за необходимости расширения пара до состояния, близкого к вакууму, для оптимальной передачи полученной энергии. Существенно низкое давление конденсатора требует не только тщательно разработанных средств удаления неконденсируемых газов, которые проникают в Систему, но также больших, дорогостоящих и медленно запускающихся расширительных ступеней и конденсирующих блоков.

[0006] В другой обычной системе, работающей по циклу Ренкина, в качестве рабочей текучей среды используется двуокись углерода. Двуокись углерода может быть подвергнута сверхкритическому нагреванию до повышенных температур без риска химического разложения. С другой стороны, двуокись углерода имеет относительно низкую критическую температуру. Температура теплоотвода должна быть несколько ниже, чем температура конденсации двуокиси углерода, для обеспечения конденсации двуокиси углерода в жидкую фазу для перекачивания. Во многих географических местах отсутствует возможность конденсации двуокиси углерода при использовании окружающего воздуха в качестве охлаждающей среды для конденсатора, так как температуры окружающей среды в таких местах обычно превосходят критическую температуру двуокиси углерода.

[0007] Существует необходимость в создании более эффективной системы, работающей по циклу Ренкина, и соответствующего способа.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0008] В соответствии с одним иллюстративным вариантом выполнения данного изобретения предложена иллюстративная система, работающая по циклу Ренкина. Указанная система содержит нагреватель, выполненный с возможностью осуществления циркуляции рабочей текучей среды при теплообмене с горячей текучей средой для обеспечения испарения указанной рабочей среды. К нагревателю присоединена горячая система. Горячая система содержит первый теплообменник, выполненный с возможностью осуществления циркуляции первого парообразного потока рабочей среды от нагревателя при теплообмене с первым конденсированным потоком рабочей среды для обеспечения нагревания указанного первого Конденсированного потока. К нагревателю и Горячей системе присоединена холодная система. Холодная система содержит второй теплообменник, выполненный с возможностью осуществления циркуляции второго парообразного потока рабочей среды от первой системы при теплообмене со вторым конденсированным потоком рабочей среды для обеспечения нагревания указанного второго конденсированного потока перед подачей к нагревателю.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0009] Эти и другие особенности, аспекты и преимущества данного изобретения станут более понятны после прочтения нижеследующего подробного описания, выполненного со ссылкой на сопроводительные чертежи, на всем протяжении которых одинаковые номера позиций обозначают одинаковые элементы и на которых:

[0010] фиг.1 изображает схематический вид системы, работающей по циклу Ренкина с двойным перегревом, в соответствии с иллюстративным вариантом выполнения изобретения,

[ООН] фиг.2 изображает схематический вид части горячей системы, входящей в систему, работающую по циклу Ренкина с двойным перегревом, в соответствии с иллюстративным вариантом выполнения изобретения, и

[0012] фиг.3 изображает схематический вид части холодной системы, входящей в систему, работающую по циклу Ренкина с двойным перегревом, в соответствии с иллюстративным вариантом выполнения изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0013] В соответствии с вариантами выполнения, рассмотренными в данном документе, предложена система, работающая по циклу Ренкина с двойным перегревом. Иллюстративная система, работающая по циклу Ренкина, содержит нагреватель, выполненный с возможностью осуществления циркуляции рабочей текучей среды при теплообмене с горячей текучей средой для обеспечения испарения указанной рабочей среды. К нагревателю присоединена горячая система. Горячая система содержит первый теплообменник, выполненный с возможностью осуществления циркуляции первого парообразного потока рабочей среды от нагревателя при теплообмене с первым конденсированным потоком рабочей среды для обеспечения нагревания указанного первого конденсированного потока. К нагревателю и горячей системе присоединена холодная система. Холодная система содержит второй теплообменник, выполненный с возможностью осуществления циркуляции второго парообразного потока рабочей среды от горячей системы при теплообмене со вторым конденсированным потоком рабочей среды для обеспечения нагревания указанного второго конденсированного потока перед подачей к нагревателю. В соответствии с иллюстративными вариантами выполнения данного изобретения система, работающая по циклу Ренкина, объединена с источниками тепла для обеспечения возможности достижения повышенного эффективного восстановления отработанного тепла для генерации электричества. К указанным источникам тепла могут относиться двигатели внутреннего сгорания, газовые турбины, геотермальные, солнечные, промышленные и коммунально-бытовые источники тепла и т.п.

[0014] На фиг.1 изображена система 10, работающая по циклу Ренкина, в соответствии с иллюстративным вариантом выполнения данного изобретения. Изображенная система 10 содержит нагреватель 12, горячую систему 14 и холодную систему 16. Рабочая текучая среда циркулирует через систему 10. Горячая система 14 содержит первый расширитель 18, первый теплообменник 20, первый конденсирующий блок 22 и первый насос 24. Холодная система 16 содержит второй расширитель 26, второй теплообменник 28, второй конденсирующий блок 30 и второй насос 32.

[0015] Нагреватель 12 присоединен к источнику тепла (не показан), например, выхлопному блоку теплообразующей системы (например, двигателя внутреннего сгорания). Нагреватель 12 получает тепло от горячей текучей среды, например, от выхлопного газа, созданного источником тепла, и нагревает рабочую среду с обеспечением создания первого парообразного потока 34 рабочей среды. В горячей системе 14 первый парообразный поток 34 проходит через первый расширитель 18 с обеспечением расширения указанного потока 34 и приведения в действие первого генераторного блока (не показан). Первый расширитель 18 может представлять собой осевой расширитель, импульсный расширитель или высокотемпературный винтовой расширитель, турбинный расширитель с радиальным впуском. После прохождения через расширитель 18 поток 34 при относительно низком давлении и низкой температуре проходит через первый теплообменник 20 к первому конденсирующему блоку 22. Поток 34 конденсируется в жидкость с обеспечением создания первого конденсированного потока 36 рабочей текучей среды. Указанный конденсированный поток 36 затем перекачивается с помощью первого насоса 24 ко второму расширителю 26 через первый теплообменник 20. Теплообменник 20 выполнен с возможностью осуществления циркуляции первого парообразного потока 34 от первого расширителя 18 при теплообмене с первым конденсированным потоком 36 для обеспечения нагревания потока 36 и создания второго парообразного потока 38 рабочей текучей среды.

[0016] В холодной системе 16 второй парообразный поток 38 проходит через второй расширитель 26 с обеспечением расширения указанного потока 38 и приведения в действие второго генераторного блока (не показан). Второй расширитель 26 может представлять собой осевой расширитель, импульсный расширитель или высокотемпературный винтовой расширитель, турбинный расширитель с радиальным впуском. После прохождения через расширитель 26 поток 38 проходит через второй теплообменник 28 ко второму конденсирующему блоку 30. Поток 38 конденсируется в жидкость с обеспечением создания второго конденсированного потока 40 рабочей текучей среды. Указанный конденсированный поток 40 затем перекачивается с помощью второго насоса 32 к нагревателю 12 через второй теплообменник 28. Теплообменник 28 выполнен с возможностью осуществления циркуляции второго парообразного потока 38 от второго расширителя 26 при теплообмене со вторым конденсированным потоком 40 для обеспечения нагревания потока 40 перед подачей к нагревателю 12.

[0017] В изображенном варианте выполнения существуют два случая теплообмена (которые также могут быть названы «внутрицикловыми» процессами передачами тепла) между потоком рабочей текучей среды высокого давления и потоком рабочей текучей среды низкого давления. В первом случае первый парообразный поток 34 циркулирует при теплообмене с первым конденсированным потоком 36 для обеспечения нагревания потока 36 и создания второго парообразного потока 38 рабочей текучей среды. Данный теплообмен служит для кипячения (в случае нахождения потока 36 при субкритической температуре) или повышения иным образом энтальпии (в случае нахождения потока 36 при сверхкритической температуре) первого конденсированного потока 36 под давлением, так что второй парообразный поток 38 может затем быть в очередной раз подвергнут расширению во второй турбине 26. Во втором случае поток 38 от второго расширителя 26 циркулирует при теплообмене со вторым конденсированным потоком 40 для обеспечения нагревания указанного потока 40. Поток 40 подается к нагревателю 12 и нагревается с помощью внешнего источника тепла с обеспечением замыкания контура потока. Второй теплообменник 28 действует в системе 10 в качестве «рекуператора».

[0018] В изображенном варианте выполнения рабочая текучая среда содержит двуокись углерода. Преимущество использования двуокиси углерода в качестве рабочей текучей среды заключается в том, что она не воспламеняется, не вызывает коррозии и способна выдерживать высокие температуры цикла (например, свыше 400°С). В одном варианте выполнения, как описано выше, двуокись углерода может быть подвергнута сверхкритическому нагреванию до значительных температур без риска химического разложения. Два отдельных внутрицикловых процесса передачи тепла, следующие за начальным расширением рабочей среды, позволяют рабочей среде произвести большее количество работы в результате последовательных расширений, чем было бы возможно при одиночном процессе расширения (как при работе по обычному циклу Ренкина). В других вариантах выполнения также предусмотрены другие рабочие среды.

[0019] На фиг.2 изображена часть горячей системы 14 (показанной на фиг.1). Как изложено выше, после прохождения через первый расширитель первый парообразный поток 34 рабочей среды при относительно низком давлении и низкой температуре проходит через первый теплообменник 20 к первому конденсирующему блоку 22. Указанный блок 22 рассмотрен здесь более подробно. В изображенном варианте выполнения блок 22 представляет собой конденсирующий блок с воздушным охлаждением. Поток 34, выходящий через первый теплообменник 20, проходит через воздушный охладитель 42 первого конденсирующего блока 22. Охладитель 42 выполнен с возможностью охлаждения потока 34 с помощью окружающего воздуха.

[0020] В обычных системах во многих географических местоположениях отсутствует возможность конденсации двуокиси углерода при использовании окружающего воздуха в качестве охлаждающей среды для конденсатора, так как температуры окружающей среды в таких местоположениях обычно превосходят критическую температуру двуокиси углерода. В соответствии с вариантами выполнения данного изобретения двуокись углерода полностью конденсируется ниже ее критической температуры, даже если температуры окружающей среды в таких местоположениях обычно превышают критическую температуру двуокиси углерода.

[0021] В изображенном варианте выполнения имеется первый сепаратор 44, выполненный с возможностью отделения первого неконденсированного парового потока 46 от первого конденсированного потока 36 рабочей текучей среды, выходящего из воздушного охладителя 42. Одна часть 48 потока 46 затем подвергается расширению с помощью третьего расширителя 50. Имеется второй сепаратор 52, выполненный с возможностью отделения второго неконденсированного парового потока 54 от указанной расширенной части 48 потока 46. Второй неконденсированный паровой поток 54 циркулирует при теплообмене с оставшейся частью 56 потока 46 при помощи третьего теплообменника 58 для обеспечения конденсации указанной оставшейся части 56 потока 46.

[0022] К третьему расширителю 50 присоединен компрессор 60. Указанный компрессор 60 выполнен с возможностью сжатия второго неконденсированного парового потока 54, выходящего из третьего теплообменника 58. Сжатый поток 54 затем подается к напорной стороне воздушного охладителя 42. Здесь следует отметить, что первый конденсированный поток 36 рабочей среды, выходящий через первый сепаратор 44, третий конденсированный поток 62 рабочей среды, выходящий через второй сепаратор 52, и четвертый конденсированный поток 64 рабочей среды, выходящий через третий теплообменник 58, подаются к первому насосу 24. Для перекачивания потока 62, выходящего через второй сепаратор 52, к первому насосу 24, выполнен насос 63.

[0023] На фиг.3 изображена часть холодной системы 16 (показанной на фиг.1). Как изложено выше, после прохождения через второй расширитель второй парообразный поток 38 рабочей среды проходит через второй теплообменник 28 ко второму конденсирующему блоку 30. Указанный блок 30 рассмотрен здесь более подробно. В изображенном варианте выполнения блок 30 представляет собой конденсирующий блок с воздушным охлаждением. Поток 38, выходящий через второй теплообменник 28, проходит через воздушный охладитель 66 второго конденсирующего блока 30. Охладитель 66 выполнен с возможностью охлаждения потока 38 с помощью окружающего воздуха.

[0024] В изображенном варианте выполнения имеется третий сепаратор 68, выполненный с возможностью отделения второго неконденсированного парового потока 70 от второго конденсированного потока 38 рабочей среды, выходящего из охладителя 66. Одна часть 72 указанного потока 70 затем подвергается расширению с помощью четвертого расширителя 74. Имеется четвертый сепаратор 76, выполненный с возможностью отделения третьего неконденсированного парового потока 78 от указанной расширенной части 72 потока 70. Третий неконденсированный паровой поток 78 циркулирует при теплообмене с оставшейся частью 80 потока 70 при помощи четвертого теплообменника 82 для обеспечения конденсации указанной оставшейся части потока 78.

[0025] К четвертому расширителю 74 присоединен компрессор 84. Указанный компрессор 84 выполнен с возможностью сжатия третьего неконденсированного парового потока 78, выходящего из четвертого теплообменника 82. Сжатый поток 78 затем подается к напорной стороне воздушного охладителя 66. Здесь следует отметить, что второй конденсированный поток 38 рабочей среды, выходящий через третий сепаратор 68, пятый конденсированный поток 86 рабочей среды, выходящий через четвертый сепаратор 76, и шестой конденсированный поток 88 рабочей среды, выходящий через четвертый теплообменник 82, подаются ко второму насосу 32. Для перекачивания потока 86, выходящего через четвертый сепаратор 76, ко второму насосу 32, выполнен насос 87.

[0026] В рассмотренных выше вариантах выполнения, изображенных на фиг.2 и 3, часть рабочей текучей среды, например, двуокиси углерода, отводится к каждому из двух конденсирующих блоков 22, 30 для достижения конденсации указанной среды. В случае если охлаждающий окружающий воздух становится слишком теплым для осуществления полной конденсации рабочей среды, то часть неконденсированного пара подвергается избыточному расширению, так что указанная часть охлаждается до температуры значительно ниже температуры насыщения, а также температуры окружающего воздуха. Этот охлажденный неконденсированный пар затем циркулирует при теплообмене с оставшейся частью неконденсированного пара, которая не была подвергнута избыточному расширению, для обеспечения конденсации указанной оставшейся части неконденсированного пара в жидкость. Количество неконденсированного пара, которое необходимо отвести и подвергнуть избыточному расширению, может регулироваться до тех пор, пока оно не станет достаточным для осуществления полной конденсации не отведенной части неконденсированного пара. Работа вала, полученная в результате процесса расширения, используется для сжатия избыточно расширенной части неконденсированного пара после ее нагревания в процессе конденсации. Сжатый паровой поток затем снова циркулирует к положению на напорной стороне конденсирующего блока.

[0027] Несмотря на то что приведенные выше варианты выполнения рассмотрены для случая использования двуокиси углерода в качестве рабочей текучей среды, в некоторых других вариантах выполнения также могут использоваться другие рабочие текучие среды с низкой критической температурой, пригодные для цикла Ренкина. Как изложено в данном документе, обеспечение наличия охлаждающего потока для цикла Ренкина облегчает возможность использования охлаждающего потока, подходящего для конденсации рабочей среды при возрастании температуры окружающей охлаждающей среды во время летнего сезона. В соответствии с иллюстративным вариантом выполнения конденсирующие блоки и ступень низкого давления турбины имеют уменьшенные размеры для циклов Ренкина, в которых в качестве рабочей текучей среды используется двуокись углерода.

[0028] Несмотря на то что в данном документе проиллюстрированы и описаны лишь некоторые особенности изобретения, специалистами в данной области техники может быть предложено множество модификаций и изменений. Таким образом, следует понимать, что прилагаемая формула изобретения охватывает все такие модификации и изменения, как находящиеся в рамках идеи изобретения.

ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ

10 система, работающая по циклу Ренкина 12 нагреватель 14 горячая система 16 холодная система 18 первый расширитель 20 первый теплообменник 22 первый конденсирующий блок 24 первый насос 26 второй расширитель 28 второй теплообменник 30 второй конденсирующий блок 32 второй насос 34 первый парообразный поток 36 первый конденсированный поток 38 второй парообразный поток 40 второй конденсированный поток 42 воздушный охладитель 44 первый сепаратор 46 первой неконденсированный паровой поток 48 одна часть первого неконденсированного парового потока 50 третий расширитель 52 второй сепаратор 54 второй неконденсированный паровой поток 56 оставшаяся часть первого неконденсированного парового потока 58 третий теплообменник 60 компрессор 62 третий конденсированный поток рабочей текучей среды 63 насос 64 четвертый конденсированный поток рабочей текучей среды 66 воздушный охладитель 68 третий сепаратор 70 второй неконденсированный паровой поток 72 одна часть второго неконденсированного парового потока 74 четвертый расширитель 76 четвертый сепаратор 78 третий неконденсированный паровой поток 80 оставшаяся часть второго неконденсированного парового потока 82 четвертый теплообменник 84 компрессор 86 пятый конденсированный поток рабочей текучей среды 87 насос 88 шестой конденсированный поток рабочей текучей среды.

Похожие патенты RU2561346C2

название год авторы номер документа
Система, работающая по циклу Ренкина, и соответствующий способ 2010
  • Лехар Мэттью Александр
RU2688342C2
КОМБИНИРОВАННАЯ ТЕПЛОВАЯ СИСТЕМА С ЗАМКНУТЫМ КОНТУРОМ ДЛЯ РЕКУПЕРАЦИИ ОТРАБОТАННОГО ТЕПЛА И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ 2010
  • Лехар Мэттью Александер
RU2551458C2
УСТАНОВКА ДЛЯ ВЫРАБОТКИ ЭНЕРГИИ (ВАРИАНТЫ) И ТУРБОДЕТАНДЕР 2011
  • Ланди Джакомо
  • Скотти Дель Греко Альберто
  • Паломба Серджио
  • Мариотти Габриеле
RU2568378C2
СИСТЕМА И СПОСОБ РЕКУПЕРАЦИИ ОТХОДЯЩЕГО ТЕПЛА 2019
  • Насини, Эрнесто
  • Сантини, Марко
  • Беллантоне, Фраческо
  • Кьези, Франческо
RU2795864C2
УСТАНОВКА ЗАМКНУТОГО ЦИКЛА 2014
  • Зампьери Джино
RU2633321C2
СПОСОБ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ И ТУРБОЭЛЕКТРИЧЕСКАЯ УСТАНОВКА 2023
  • Кривобок Андрей Дмитриевич
RU2821667C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МОЧЕВИНЫ 2019
  • Сасаки Кейго
RU2788006C1
ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА КОМБИНИРОВАННОГО ЦИКЛА ДЛЯ ВЫРАБОТКИ МЕХАНИЧЕСКОЙ ЭНЕРГИИ И СПОСОБ ВЫРАБОТКИ МЕХАНИЧЕСКОЙ ЭНЕРГИИ И ПРИВЕДЕНИЯ В ДЕЙСТВИЕ ТУРБОМАШИНЫ 2013
  • Буррато Андреа
RU2644801C2
КРИОГЕННОЕ ОТДЕЛЕНИЕ СО С ИСПОЛЬЗОВАНИЕМ ОХЛАЖДАЮЩЕЙ СИСТЕМЫ 2012
  • Шталльманн Олаф
RU2554697C2
КОМБИНИРОВАННАЯ СИСТЕМА И СПОСОБ РЕКУПЕРАЦИИ ТЕПЛА И ОХЛАЖДЕНИЯ 2018
  • Сантини, Марко
  • Амидеи, Симоне
RU2739656C1

Иллюстрации к изобретению RU 2 561 346 C2

Реферат патента 2015 года СИСТЕМА, РАБОТАЮЩАЯ ПО ЦИКЛУ РЕНКИНА, И СООТВЕТСТВУЮЩИЙ СПОСОБ

Изобретение относится к энергетике. Предложена система, работающая по циклу Ренкина, содержащая нагреватель, выполненный с возможностью осуществления циркуляции рабочей текучей среды при теплообмене с горячей текучей средой для обеспечения испарения указанной рабочей среды. К нагревателю присоединена горячая система. Горячая система содержит первый теплообменник, выполненный с возможностью осуществления циркуляции первого парообразного потока рабочей текучей среды от нагревателя при теплообмене с первым конденсированным потоком рабочей текучей среды для обеспечения нагревания указанного первого потока. К нагревателю и горячей системе присоединена холодная система. Холодная система содержит второй теплообменник, выполненный с возможностью осуществления циркуляции второго парообразного потока рабочей текучей среды из первой системы при теплообмене со вторым конденсированным потоком рабочей текучей среды для обеспечения нагревания указанного второго потока (40) перед подачей к нагревателю. Изобретение позволяет повысить эффективность работы системы. 2 н. и 8 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 561 346 C2

1. Система (10), работающая по циклу Ренкина, содержащая:
нагреватель (12), выполненный с возможностью осуществления циркуляции рабочей текучей среды при теплообмене с горячей текучей средой для обеспечения испарения указанной рабочей среды,
горячую систему (14), присоединенную к нагревателю (12) и содержащую первый теплообменник (20), выполненный с возможностью осуществления циркуляции первого парообразного потока (34) рабочей текучей среды от нагревателя (12) при теплообмене с первым конденсированным потоком (36) рабочей текучей среды для обеспечения нагревания указанного первого потока (36),
холодную систему (16), присоединенную к нагревателю (12) и горячей системе (14) и содержащую второй теплообменник (28), выполненный с возможностью осуществления циркуляции второго парообразного потока (38) рабочей текучей среды от горячей системы (14) при теплообмене со вторым конденсированным потоком (40) рабочей текучей среды для обеспечения нагревания указанного второго потока (40) перед подачей к нагревателю (12),
причем горячая система (14) содержит первый расширитель (18), выполненный с возможностью расширения первого парообразного потока (34) рабочей текучей среды от нагревателя (12), и
горячая система (14) содержит первый конденсирующий блок (22), выполненный с возможностью конденсации расширенного первого парообразного потока (34) рабочей текучей среды, подаваемого от нагревателя (12) через первый теплообменник (20), и
горячая система (14) содержит первый насос (24), выполненный с возможностью перекачки первого конденсированного потока (36) рабочей текучей среды через первый теплообменник (20) для создания второго парообразного потока (38) рабочей текучей среды, и
холодная система (16) содержит второй расширитель (26), выполненный с возможностью расширения второго парообразного потока (38) рабочей текучей среды из первого теплообменника (20), и
холодная система (16) содержит второй конденсирующий блок (30), выполненный с возможностью конденсации второго парообразного потока (38) рабочей текучей среды, перекачиваемого из второго расширителя (26) через второй теплообменник (28).

2. Система (10) по п. 1, в которой первый конденсирующий блок (22) содержит воздушный охладитель (42), выполненный с возможностью охлаждения расширенного первого парообразного потока (34) рабочей текучей среды, подаваемого от нагревателя (12) через первый теплообменник (20).

3. Система (10) по п. 2, в которой первый конденсирующий блок (22) содержит первый сепаратор (44), выполненный с возможностью отделения первого неконденсированного парового потока (46) от первого конденсированного потока (36) рабочей текучей среды, выходящего из воздушного охладителя (42).

4. Система (10) по п. 3, в которой первый конденсирующий блок (22) содержит третий расширитель (50), выполненный с возможностью расширения одной части (48) указанного первого неконденсированного парового потока.

5. Система (10) по п. 4, в которой первый конденсирующий блок (22) содержит второй сепаратор (52), выполненный с возможностью отделения второго неконденсированного парового потока (54) от расширенной части (48) первого неконденсированного парового потока, выходящей из третьего расширителя (50).

6. Система (10) по п. 1, в которой рабочая текучая среда содержит двуокись углерода.

7. Система (10) по п. 1, в которой горячая текучая среда содержит выхлопной газ.

8. Система (10) по п. 1, в которой холодная система (16) содержит второй насос (32), выполненный с возможностью перекачки второго конденсированного потока (40) рабочей текучей среды через второй теплообменник (28) к нагревателю (12).

9. Система (10) по п. 8, в которой первый конденсированный поток (36) рабочей среды, выходящий через первый сепаратор (44), третий конденсированный поток (62) рабочей среды, выходящий через второй сепаратор (52), и четвертый конденсированный поток (64) рабочей среды, выходящий через третий теплообменник (58), подаются к первому насосу (24).

10. Способ, включающий:
осуществление циркуляции рабочей текучей среды при теплообмене с горячей текучей средой при помощи нагревателя (12) для обеспечения испарения указанной рабочей текучей среды,
осуществление циркуляции первого парообразного потока (34) рабочей текучей среды от нагревателя (12) при теплообмене с первым конденсированным потоком (36) рабочей текучей среды при помощи первого теплообменника (20) горячей системы (14) для обеспечения нагревания указанного первого потока (36), и
осуществление циркуляции второго парообразного потока (38) рабочей текучей среды от первой системы при теплообмене со вторым конденсированным потоком (40) рабочей текучей среды при помощи второго теплообменника (28) холодной системы (16) для обеспечения нагревания указанного второго потока (40) перед подачей к нагревателю (12);
причем осуществляют расширение первого парообразного потока (34) рабочей текучей среды через первый расширитель (18) горячей системы (14), и
осуществляют конденсацию расширенного первого парообразного потока (34) рабочей текучей среды в первом конденсирующем блоке (22) горячей системы, и
осуществляют расширение второго парообразного потока (38) рабочей текучей среды из первого теплообменника (20) через второй расширитель (26) холодной системы (16), и
осуществляют конденсацию второго парообразного потока (38) рабочей текучей среды через второй конденсирующий блок (30) холодной системы (16).

Документы, цитированные в отчете о поиске Патент 2015 года RU2561346C2

Способ работы замкнутой энергетической установки 1979
  • Бубнов Владилен Павлович
  • Нестеренко Василий Борисович
SU920241A1
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
БИ5ЛИО"1'Д''А 0
  • Г. В. Проскур Ков Оюзная Сутг Ьйзйв
SU373442A1
Способ работы энергетической установки с рабочим телом на смеси веществ химически активного и химически инертного по отношению к конструкционным материалам 1986
  • Тетельбаум Соломон Давидович
SU1477907A1
Механизм для сообщения поршню рабочего цилиндра возвратно-поступательного движения 1918
  • Р.К. Каблиц
SU1989A1

RU 2 561 346 C2

Авторы

Лехар Мэттью Александр

Даты

2015-08-27Публикация

2010-09-27Подача