СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ Российский патент 2015 года по МПК F01K17/02 

Описание патента на изобретение RU2562506C2

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС в зимний период времени.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).

Прототипом является способ работы тепловой электрической станции, содержащей подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей (патент RU №2268372, МПК F01K 17/02, 20.01.2006).

В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода.

Таким образом, в известном способе работы тепловой электрической станции отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости.

Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины для дополнительной выработки электроэнергии, обусловленной использованием вторичного контура (теплонасосной установки). Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины.

Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель в зимний период времени нарушается его экосистема.

Задачей изобретения является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.

Технический результат достигается тем, что в способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, согласно настоящему изобретению утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают и испаряют в конденсаторе паровой турбины, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.

В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.

Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), которую осуществляют путем нагрева, в конденсаторе паровой турбины, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность изобретения поясняется фиг. 1, на которой представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором и теплообменником-рекуператором.

На фиг. 1 цифрами обозначены:

1 - паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - теплообменник-конденсатор,

9 - конденсатный насос,

10 - теплообменник-рекуператор.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1.

В тепловую электрическую станцию введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 10, теплообменник-конденсатор 8 и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 10, который соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 10, выход теплообменника-рекуператора 10 соединен по греющей среде с теплообменником-конденсатором 8, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.

Способ работы тепловой электрической станции осуществляют следующим образом.

Отработавший пар поступает из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара при помощи охлаждающей жидкости.

Отличием предлагаемого способа является то, что утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе 9 теплового двигателя, нагревают в теплообменнике-рекуператоре 10 теплового двигателя, нагревают и испаряют в конденсаторе 2 паровой турбины, расширяют в турбодетандере 6 теплового двигателя, снижают его температуру в теплообменнике-рекуператоре 10 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.

В качестве теплообменника-конденсатора 8 теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.

Пример конкретного выполнения

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.

Преобразование сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара в механическую и далее в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.

Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) осуществляют путем нагрева, в конденсаторе 2 паровой турбины 1, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Весь процесс начинается со сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который направляют на нагрев в теплообменник-рекуператор 10, а затем в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар.

Температура кипения сжиженного пропана C3H8 сравнительна низка (293 К при давлении 0,833 МПа), поэтому в конденсаторе 2 паровой турбины он быстро испаряется и переходит в газообразное состояние, после чего, имея температуру перегретого газа, его направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан С3Н8, имеющий температуру перегретого газа около 283 К, направляют в теплообменник-рекуператор 10 для снижения температуры.

В теплообменнике-рекуператоре 10 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижается нагрузка на теплообменник-конденсатор 8 и затраты мощности на привод вентиляторов воздушного охлаждения.

Далее, при снижении температуры газообразного пропана C3H8, происходит его сжижение в теплообменнике-конденсаторе 8, выполненном, например, в виде конденсатора воздушного охлаждения, охлаждаемого низкотемпературным воздухом окружающей среды в температурном диапазоне от 223,15 К до 273,15 К.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Использование предлагаемого способа работы тепловой электрической станции позволит по сравнению с прототипом повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.

Похожие патенты RU2562506C2

название год авторы номер документа
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2013
  • Гафуров Айрат Маратович
RU2575252C2
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2014
  • Гафуров Айрат Маратович
  • Гафуров Наиль Маратович
RU2560510C1
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2013
  • Гафуров Айрат Маратович
RU2555600C1
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2013
  • Гафуров Айрат Маратович
RU2564466C2
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2013
  • Гафуров Айрат Маратович
RU2569470C2
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2013
  • Гафуров Айрат Маратович
RU2568348C2
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2014
  • Гафуров Айрат Маратович
  • Гафуров Наиль Маратович
RU2560505C1
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2014
  • Гафуров Айрат Маратович
  • Гафуров Наиль Маратович
RU2560499C1
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2014
  • Гафуров Айрат Маратович
  • Гафуров Наиль Маратович
RU2560513C1
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2013
  • Гафуров Айрат Маратович
RU2569994C2

Реферат патента 2015 года СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ

Предлагаемое изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС в зимний период времени. Способ работы тепловой электрической станции, по которому используют тепловой двигатель (5) с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина. В качестве охлаждающей жидкости теплового двигателя (5) используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. Рабочее тело расширяют в турбодетандере (6) теплового двигателя (5). Далее снижают его температуру в теплообменнике-рекуператоре (10) теплового двигателя (5), конденсируют в теплообменнике-конденсаторе (8), сжимают в конденсатном насосе (9) и нагревают в теплообменнике-рекуператоре (10). При этом отработавший пар поступает из паровой турбины (1) в паровое пространство конденсатора (2) паровой турбины (1), конденсируется на поверхности конденсаторных трубок. Конденсат с помощью конденсатного насоса (3) конденсатора паровой турбины направляют в систему регенерации. При помощи теплового двигателя (5) осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине (1) пара. Тепловой двигатель (5) используют при конденсации отработавшего в турбине(1) пара, причем низкокипящее рабочее тело, после его нагрева в теплообменнике-рекуператоре (10), нагревают и испаряют в конденсаторе (2) паровой турбины (1), используя скрытую теплоту парообразования. Эту теплоту отводят при помощи низкокипящего рабочего тела, циркулирующего в замкнутом контуре, в турбодетандер (6) теплового двигателя (5). Конденсацию низкокипящего рабочего тела в теплообменнике-конденсаторе (8) осуществляют при температуре окружающей среды от 223,15 К до 273,15 К. Технический результат заключается в повышении коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 562 506 C2

1. Способ работы тепловой электрической станции, по которому используют тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре теплового двигателя, конденсируют в теплообменнике-конденсаторе теплового двигателя, сжимают в конденсатном насосе теплового двигателя и нагревают в теплообменнике-рекуператоре теплового двигателя, причем отработавший пар поступает из паровой турбины в паровое пространство конденсатора паровой турбины, конденсируется на поверхности конденсаторных трубок, а конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, отличающийся тем, что при помощи указанного теплового двигателя осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара, при этом тепловой двигатель используют при конденсации отработавшего в турбине пара, причем низкокипящее рабочее тело, после его нагрева в теплообменнике-рекуператоре теплового двигателя, нагревают и испаряют в конденсаторе паровой турбины, используя скрытую теплоту парообразования, которую отводят при помощи низкокипящего рабочего тела, циркулирующего в замкнутом контуре, в турбодетандер теплового двигателя, а конденсацию низкокипящего рабочего тела в теплообменнике-конденсаторе теплового двигателя осуществляют при температуре окружающей среды от 223,15 К до 273,15 К.

2. Способ работы тепловой электрической станции по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8, который нагревают в конденсаторе паровой турбины до температуры 293 К, при которой он испаряется.

3. Способ работы тепловой электрической станции по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

Документы, цитированные в отчете о поиске Патент 2015 года RU2562506C2

ГАФУРОВ А.М
и др
Пишущая машина 1922
  • Блок-Блох Г.К.
SU37A1
РЫЖКИН В.Я
Тепловые электрические станции, М
Энергия, 1976
US 4296802 А, 27.10.1981
ПРИНЦИП ФОРМИРОВАНИЯ УЛУЧШЕННОГО ОПИСАНИЯ ЗВУКОВОГО ПОЛЯ ИЛИ МОДИФИЦИРОВАННОГО ОПИСАНИЯ ЗВУКОВОГО ПОЛЯ С ИСПОЛЬЗОВАНИЕМ МНОГОТОЧЕЧНОГО ОПИСАНИЯ ЗВУКОВОГО ПОЛЯ 2018
  • Херре, Юрген
  • Хабетс, Эмануэль
RU2736418C1
US 5632143 А, 27.05.1997
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ТЕПЛА ОТ ИСТОЧНИКА ТЕПЛА К ТЕРМОДИНАМИЧЕСКОМУ ЦИКЛУ С РАБОЧЕЙ СРЕДОЙ С ПО КРАЙНЕЙ МЕРЕ ДВУМЯ ВЕЩЕСТВАМИ С НЕИЗОТЕРМИЧЕСКИМ ИСПАРЕНИЕМ И КОНДЕНСАЦИЕЙ 2005
  • Блонн Янн
  • Ленгерт Йорг
  • Русланд Катрин
RU2358129C2

RU 2 562 506 C2

Авторы

Гафуров Айрат Маратович

Даты

2015-09-10Публикация

2013-12-27Подача